SHOK TECHNOLOGIC	AL A	S	SAN	MRAT ASH	OK TE	CHNOL	OGICAL	INST	ITUT	ГΕ			
(Engineering College), VIDISHA M.P.													
Stores .	(Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal)												
UIDISHA M.S	1			Δnn	lied S	cience	(Physic	's)	,				
Semester/	Vear	1/11		Pro	oram		(1 119510	 R T	ach				
Subject		Subject			gram	Subject							
Category	BS	Code:		PYB101		Name:		Applied	Physi	ics			
		Ma	ixim	um Marks Allo	tted			Conta	oct Ho	Irs			
-		Theory			Pra	actical	Total	001110		ars		otal	
End Sem	Mid-S	d-Sem Quiz Assignment Sem Work Marks L T P											
60	20) 1	0	10	30	20	150	3	0	1		4	
Prerequis	ites:												
Intermed	iate Phys	ics (Theor	y an	nd Lab)									
Course O	bjective:												
This of	course is	designed	to i	mpart fundam	ental kn	owledge at	out some a	reas of	physi	cs y	which	are	
to the	e core o	of emergin	ng t	technologies.	It is pl	anned to j	provide kn	owledg	e abo	ut	Quan	tum	
mecha	anics, La	asers, Fit	ber	Optics, Holog	ghphy, S	Supercondu	ctor, Nano	materia	uls, D	iele	ectric	and	
piezo	electric	materials	5. L	aboratory sess	sions are	e also desig	gned which	are ble	nded	wit	h		
exper	iments of	n the fund	ame	ental and advar	nced are	as of physic	cs.						
Course O	utcomes	: of the cour		ctudopte will b									
		aretand ba				l annly it to	the behavi	our of a	evet	m	at		
001	the mici	rosconic le	vel	and solve the	problem	i appiy ii iu is			i Sysie	5111	aı		
CO2	To und	derstand	pro	cess of lase	ers and	explain	the requir	ements	. pro	per	ties.		
	classific	ation of v	aric	ous lasers. Th	ney will	also develo	op an unde	erstandi	ng of	op	tical		
	fibers a	and and	holo	ography and	can ex	cplin the c	haracteristi	ics, va	ious	los	ses,		
	dispersi	on in opti	cal	fibers and pr	ocsees	of construc	ction and re	eprocuc	tion c	of			
CO3	To und	IIIS. Iorstand t	ho	hasic concer	te and	theory of	semicondu	ictor	for	dov	ices		
003	applicat	ion.		basic concep		theory of	Serificondo			uev	1003		
CO4	To und	erstand a	nd	know the prir	nciple of	supercond	luctors and	Inanon	nateril	s. T	Гhe		
	sduned	nt will be a	able	e to explain typ	bes of su	iperconduct	tors, their p	ropertie	s and				
	applicat	ions, nanc	tec	chnology and i	ts applic	ations.	<u> </u>						
CO5	To unde	erstand the	e ch	naracteristic of	Dielect	rics and Pie	ezoelectric	materia	ls in te	erm	s of		
CO6	To perfe	plications	moi	nts related to t	he cour	se contents							
							•		<u> </u>		<u> </u>)'c	
	Quan	tum mer	han	nics: Planck's	s quanti	im hvnoth	esis Wave	-narticl	e	з.		, 3	
	duality	/ of radiat	ion	. de-Broalie n	natter w	aves. Davis	sson and (Germer'	s				
	electro	on diffrac	tion	experiment,	Compt	on effect.	Phase an	d grou	p,				
	veloci	ty, Heiser	nber	rg uncertainty	, princip	le and its	application	is, wav	e 8	3			
	functio	on and its	sigi	nificance, Eige	en value	and Eigen	function,						
	Schrö	dinger wa	/e e	equations, part	ticle in o	ne dimensio	onal potenti	al box.					
	Laser	s: Proper	ties	of lasers, the	e basic	process of	lasers, Po	pulation)- 				
	invers	ion, classi	rica	tion of lasers,	working	Of He-INe,	RUDY, NO: Y	r AG an	a				
	Indust	aseis, Ap	piic			Communic	alion, meu	icai an	u				
11	Optic	al fibers:	Liał	nt guidance th	rough or	otical fibres.	, the qualita	tive ide	a 8	3			
	of criti	ical and a	ccei	ptance angle.	types of	f fibers, nur	merical ape	erture, V	/_	-			
	Numb	er, interm	oda	I & material di	spersion	s in fiber.	- 1	, -					
	Holog	graphy:	Bas	sic principle	of ho	lography,	Constructi	on an	d				
	recons	struction o	f Im	age on hologr	am and	application	s of hologra	aphy.					
	Basic	c of semi	on	ductors: Den	sity of ei	nergy states	s, Energy-b	and	8	3			
	forma	tions, dire	ct a	and indirect ba	ind gap,	Effective n	nass, Ferm	i energ	y l	-			

	 levels. Mobility and carrier concentrations (intrinsic). Radiative and non-radiative recombination mechanisms in semiconductors . Semiconductor Devices: Properties of PN junction and I-V diode equation, Photovoltaic cell, LED Materials for fabrication, LED Structures and Characteristics; Injection Laser Diode (ILD) - Laser action in semiconductors, structures and efficiency. 		
IV	 Superconductors: Free electrons theory of metals, Temperature dependence of resistivity in superconducting Metals, Effect of magnetic field (Meissner effect), Temperature dependence of critical field, Type I and Type II superconductors, BCS theory (Qualitative), High-temperature superconductors and Applications of superconductors. Nanomaterials: Basic principle of nanoscience and technology, structure, properties ad uses of Fullerene and Carbon nanotubes, Applications of nanotechnology. 	8	
V	Dielectrics Materials: Polar and Non-Polar Dielectrics, Dipole moment and Polarization, Dielectric constant& Polarization, Gauss law in Dielectric, the relation between electric field vector E, Pand D. Piezoelectric materials- Ferroelectric materials, Piezoelectric effect, direct and converse parameter definitions, Piezoceramics, Piezopolymers, Piezoelectric materials as sensor and transducers.	8	
Guest L	Lectures (if any)		
Total H	lours	40	
Sugges	stive list of experiments:		
1.	To determine the width of a single slit from the study of Fraunhoffer diffraction	on patte	ern using
	a He-Ne Laser.		
2.	To determine the frequency of A.C. mains using an electrical - vibrator.		
5. 4	Determination of Planck's constant. To determine the frequency of ΛC mains using a conometer		
	To study the nature of polarization of light using the half-wave plate		
5. 6	To find the numerical aperture of the given fibre		
7.	To determine the refractive indices μ_0 and μ_a of Quartz prism for ordinary ar	nd extra	ordinary
	ravs using the spectrometer.		, or arrively
8.	To determine the wavelength of monochromatic source of light by Fresnel's bi	iprism.	
9.	To study the V-I characteristics of semiconductor diode	T	
10.	To study V-I Characteristics of LED		
11.	To study the V-I characteristics of tunnel diode		
12.	To determine the radius of curvature of a given plano-convex lens by	Newto	on's rings
	method.		C
13.	To determine the absorption coefficient of a glass plate by "LUMMER- BRC photometer.	DHUN	Л"
14.	To determine the resolving power of a telescope.		
15.	To determine the wavelength of light emitted by mercury vapour lamp using	ga d	iffraction
	grating.	2	
Text B	ook-		
•	Concepts of Modern Physics, Arthur Beiser, Tata McGraw-Hill,6 th edition.20	09.	
•	Optics, A.Ghatak, McGraw Hill, 2012.		
•	Engineering Physics, Hitendra K Malik& A.K. Singh, Mc Graw Hill Education	on Priv	ate
	Limited		
•	Elements of Modern Physics, S.H. Patil		
•	Kiruthiga Sivaprastha, Modern Physics, S. Chand		
•	A Textbook of Engineering Physics, Gaur and Gupta, Dhanpat Rai Publishers	, New	
	Delhi,8 th edition,.2011.		
	Electrical Engineering Materials by A.J. Dekker, PHI publication		
Refere	ence Books-		
•	Lasers and non-linear optics, B.B.Laud, New Age international,3rd edition,20	11	

- Solid State Physics, S.O.Pillai, New Age International Ltd, publishers
- Electromagnetic Theory for Telecommunications, C.S.Liu and V.K.Tripathi, Foundation Books, New Delhi,2007
- Quantum Mechanics by L.I. Schiff, Mc Graw Hill Co.
- A Textbook of Quantum Mechanics by Piravonu Mathews, K. Venkatesan (Tata McGraw Hill)
- Cady, W. G., Piezoelectricity, Dover Publication
- Piezoelectric Materials & Devices: Application in Engineering And Medical Sciences By M.S. Vijiya .CRC Press.
- Electrical Engineering Materials Physics Properties by SP A Seth, Dhanpat Rai Publications.

Modes of Evaluation and Rubric Assignments, Ouiz, Tests & exams

Criteria	Excellent (3 points)	Good (2 points)	Fair(1 point)
Quiz	> 80%	60-80%	40-60%
Test & exam	>75%	60 -75%	< 60%
Assignment	Assignment is coherently organized and the logic / solution to all the problems provided. Writing is clear and concise and persuasive.	Assignment is generally well organized and logic / solution to maximum of the problems provided barring few inaccuracies.	Assignment is poorly organized and difficult to follow. Does not flow logically from one part to another with lots of mistakes

List/Links of e-learning resource

https://nptel.ac.in/courses/122107035/#

Han

- https://nptel.ac.in/course.html
- http://www.tndte.gov.in/site/wp-content/uploads/2016/08/Engineering-physics.pdf
- https://physicstoday.scitation.org
- Barbastathis, G. and Sheppard C., Optics, <u>https://ocw.mit.edu/courses/mechanical-engineering/2-71-optics-spring-2009/</u>

Recommendation by Board of studies on	14.06.2022
Approval by Academic council on	
Compiled and designed by	Jetendra Parashar
Subject handled by department	Applied Science (Physics)

hputty.

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Department of Electronics Engineering

Syllabus applicable to July 2022 admitted and later batches

Semester and Year of study B. Tech 1 ⁴¹ Year 1 ⁴⁵ Semester Subject Category Engineering Science Course (ESC) Subject Code: EIA101 Subject Name: Basic Electronics Theory Practical Total Contact Hours G0 20 10 10 30 10 150 3 0 2 4 Prerequisites: Fundamentals of Physics Contact Hours Total Credits Course Objective: Internet treatment and qualitative analysis and makes use of simple models and equation to illustrate the concepts involved. 3. To provide an overview of amplifiers. Sticinent conveloped is provided so that students will be able to use this course as the basis for other advanced courses like Analog Circuits and Linear IC's, Power Electronics etc. S. Continue to enhance oral and written communication skills specifically directed to the practice of electronics engineering. Course Outcomes: Atter completion of this course students will be able to CO1: Acquir enoughed of semiconductor devices and their working mechanism. CO2: Analyze the circuit characteristics and Compute its parameters. CO4: Design various electronic circuit. UNITS Descriptions Inture to thance oral and written common collector and popritation, modes, Stransistor as an amplifier, Basistor incruits, lo	Name of	the cour		B. Tech in Electronics & Instrumentation Engineering									
Subject Category Engineering Science Course (ESC) Subject Code: ElA101 Subject Name: Basic Electronics Theory Practical Contact Hours Total End Mid- Sem Assignment Quiz Sem U Total Total Sem Sem Assignment Quiz Sem Work Quiz Marks L T P 60 20 10 10 30 10 10 150 3 0 2 4 Prerequisites: Fundamentals of Physics Ecourse Objective: Ecourse objectronic secourse involved and writen communication skills speci	Semeste	r and Ye	ar of study		B. Tech 1 st Year 1 st Semester								
Subject Code: EIA101 Subject Name: Basic Electronics Maximum Marks Allotted Contact Hours Total Total Total Sem Sem Assignment Quiz End Lab Total Total 60 20 10 10 30 10 10 10 3 0 2 4 Prerequisites: Fundamentals of Physics End Lobest Size Total Total <td>Subject C</td> <td>Category</td> <td></td> <td></td> <td>Engine</td> <td>eering S</td> <td>Science</td> <td>e Course (E</td> <td>SC)</td> <td></td> <td></td> <td></td>	Subject C	Category			Engine	eering S	Science	e Course (E	SC)				
Maximum Marks Allotted Contact Hours Total Theory Practical Total Contact Hours Total 60 20 10 10 30 10 10 150 3 0 2 4 60 20 10 10 30 10 10 150 3 0 2 4 Prerequisites: Fundamentals of Physics Course Objective:	Subject C	Code: El/	4101		Subje	ct Name	e: Basi	c Electronic	s				
Theory Practical Total Total Total Total End Sem Assignment Quiz Sem Work Quiz Marks L T P 60 20 10 10 30 10 10 150 3 0 2 4 Prerequisites: Fundamentals of Physics Course Objective: 1. The course intends to provide an overview of the principles, operation and application of the analog building blocks like diodes, BJT etc. for performing various functions. 2. This course relies on elementary treatment and qualitative analysis and makes use of simple models and equation to illustrate the concepts involved. 3. To provide an overview of amplifiers. Sufficient knowledge is provided so that students will be able to use this course as the basis for other advanced courses like Analog Circuits and Linear IC's, Power Electronics etc. 5. Continue to enhance oral and written communication skills specifically directed to the practice of electronics engineering. Course Outcomes: After completion of this course students will be able to Course intenductor diodes: Introductor devices and their working mechanism.			Maximu	m Mark	s Allotte	ed			Con	tact Ho	nurs		
End Sem Mid- Sem Assignment Quiz Quiz Sem Warks Work L T P Credits 60 20 10 10 30 10 10 150 3 0 2 4 Prerequisites: Fundamentals of Physics Course Objective: 1. The course intends to provide an overview of the principles, operation and application of the analog building blocks like diodes, BJT etc. for performing various functions. 2. This course relies on elementary treatment and qualitative analysis and makes use of simple models and equation to illustrate the concepts involved. 3. To provide an overview of amplifiers. 4. Sufficient knowledge is provided so that students will be able to use this course as the basis for other advanced courses like Analog Circuits and Linear IC's, Power Electronics etc. 5. Course Outcomes: After completion of this course students will be able to CO2: Analyze various electronic circuit configuration. CO2: Analyze various electronic circuits. UNITS Descriptions Hrs. CO's Semiconductor diodes: Introduction to PN junction diode, Zener diode and its applications, Rectifiers, Regulators, Clipping and Clamping circuits, dide, Schotity diode, Varactor diode and their applications, co		Th	eory		F	Practical		Total	001		Juis	Total	
60 20 10 10 30 10 10 150 3 0 2 4 Prerequisites: Fundamentals of Physics Course Objective: 1. The course intends to provide an overview of the principles, operation and application of the analog building blocks like diodes, BJT etc. for performing various functions. 2. This course relies on elementary treatment and qualitative analysis and makes use of simple models and equation to illustrate the concepts involved. 3. To provide an overview of that students will be able to use this course as the basis for other advanced courses like Analog Circuits and Linear IC's, Power Electronics etc. Course Outcomes: After completion of this course students will be able to CO: Schulze the nonkee oral and written communication skills specifically directed to the practice of electronics engineering. Course Outcomes: After completion of this course students will be able to CO: Schulze the nowledge of semiconductor devices and their working mechanism. CO: Schulze thoric circuit configuration. CO: Schulze the conductor devices and their working mechanism. CO: Schulze thoric circuit. <td< td=""><td>End Sem</td><td>Mid- Sem</td><td>Assignment</td><td>Quiz</td><td>End Sem</td><td>Lab- Work</td><td>Quiz</td><td>Marks</td><td>L</td><td>Т</td><td>Ρ</td><td>Credits</td></td<>	End Sem	Mid- Sem	Assignment	Quiz	End Sem	Lab- Work	Quiz	Marks	L	Т	Ρ	Credits	
Prerequisites: Fundamentals of Physics Course Objective:	60	20	10	10	30	10	10	150	3	0	2	4	
Prerequisites: Fundamentals of Physics Course Objective: 1. The course intends to provide an overview of the principles, operation and application of the analog building blocks like diodes, BJT etc. for performing various functions. 2. This course relies on elementary treatment and qualitative analysis and makes use of simple models and equation to illustrate the concepts involved. 3. To provide an overview of amplifiers. 4. Sufficient knowledge is provided so that students will be able to use this course as the basis for other advanced courses like Analog Circuits and Linear IC's, Power Electronics etc. 5. Continue to enhance oral and written communication skills specifically directed to the practice of electronics engineering. Course Outcomes: After completion of this course students will be able to CO: Analyze various electronic circuit: configuration. CO: Analyze various electronic circuit: Configuration. CO: Semiconductor diodes: Introduction to PN junction diode, Zener diode and tis applications, Rectifiers, Regulators, Clipping and Clamping circuits, B COI's Semiconductor diodes: Introduction to PN junction diode, Zener diode and tis applications, Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode. I Tunnel diode, Schottky diode, Varactor diode and their application: common emitter, common base and common collector feedback bias and voltage divider bias, D.C. analysis of transistor circuits, load l		siteou											
Fundamentals of Physics Course Objective: 1. The course intends to provide an overview of the principles, operation and application of the analog building blocks like diodes, BJT etc. for performing various functions. 2. This course relies on elementary treatment and qualitative analysis and makes use of simple models and equation to illustrate the concepts involved. 3. To provide an overview of amplifiers. 4. Sufficient knowledge is provided so that students will be able to use this course as the basis for other advanced courses like Analog Circuits and Linear IC's, Power Electronics etc. 5. Continue to enhance oral and written communication skills specifically directed to the practice of electronics engineering. Course Outcomes: After completion of this course students will be able to CO2: Analyze various electronic circuit configuration. CO3: Analyze the circuit characteristics and compute its parameters. CO4: Design various electronic circuits. UNITs Descriptions I Tunnel diode, Schottky diode, Varactor diode and their applications, Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode. II Bipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and	Prerequis	sites:											
1. The course intends to provide an overview of the principles, operation and application of the analog building blocks like diodes, BJT etc. for performing various functions. 2. This course relies on elementary treatment and qualitative analysis and makes use of simple models and equation to illustrate the concepts involved. 3. To provide an overview of amplifiers. 4. Sufficient knowledge is provided so that students will be able to use this course as the basis for other advanced courses like Analog Circuits and Linear IC's, Power Electronics etc. 5. Continue to enhance oral and written communication skills specifically directed to the practice of electronics engineering. Course Outcomes: After completion of this course students will be able to CO: Analyze various electronic circuit configuration. CO: Analyze various electronic circuit configuration. CO: Semiconductor devices and their working mechanism. CO: Semiconductor devices and their working mechanism. CO: Analyze various electronic circuit configuration. CO: Semiconductor diodes: Introduction to PN junction diode, Zener diode and its applications, Rectifiers, Regulators, Clipping and Clamping circuits, a polications, Rectifiers, Regulators, Clipping and Clamping circuits, a polications, dote, Schottky diode, Varactor diode and their applications, dote, Co:	Fundame	nentals of Physics											
1. The course intends to provide an overview of the principles, operation and application of the analog building blocks like diodes, BJT etc. for performing various functions. 2. This course relies on elementary treatment and qualitative analysis and makes use of simple models and equation to illustrate the concepts involved. 3. To provide an overview of amplifiers. 4. Sufficient knowledge is provided so that students will be able to use this course as the basis for other advanced courses like Analog Circuits and Linear IC's, Power Electronics etc. 5. Continue to enhance oral and written communication skills specifically directed to the practice of electronics engineering. Course Outcomes: After completion of this course students will be able to CC: Analyze various electronic circuit configuration. CO2: Analyze various electronic circuit configuration. CO2: Analyze various electronic circuits on pupue its parameters. CO's Semiconductor diodes: Introduction to PN junction diode, Zener diode and its applications, Rectifiers, Regulators, Clipping and Clamping circuits, Optoelectronic devices: PIN diode, Varactor diode and their applications, Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode. 10 CO2, CO4 IIII Bipolar Junction Transistors (BJTs): Physical structure and operation modes. Transistor as an amplifier, Basic BJT amplifier configuration: modes, Transistor as an amplifier, Basic BJT	Course O	ourse Objective:											
analog building blocks like diodes, BJT etc. for performing various functions. 2. This course relies on elementary treatment and qualitative analysis and makes use of simple models and equation to illustrate the concepts involved. 3. To provide an overview of amplifiers. 4. Sufficient knowledge is provided so that students will be able to use this course as the basis for other advanced courses like Analog Circuits and Linear IC's, Power Electronics etc. 5. Continue to enhance oral and written communication skills specifically directed to the practice of electronics engineering. Course Outcomes: After completion of this course students will be able to CO1: Acquire knowledge of semiconductor devices and their working mechanism. CO2: Analyze the circuit characteristics and compute its parameters. CO4: Design various electronic circuits. UNITs Descriptions Hrs. CO's Semiconductor diodes: Introduction to PN junction diode, Zener diode and its applications, Rectifiers, Regulators, Clipping and Clamping circuits, Rodel. I unnel diode, Schottky diode, Varactor diode and their applications, B GO4 Bipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, emitter feedback bias, collector feedback bias and uvoltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes. AC Analysis of BJT: III Transistor Model: re Model, h-parameter model, Small Signal Analysis, 12 CO3 IV multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier; coupling and frequency response of cascaded g IV enterement offerst of reacodine or underse aris in phrea input to the analysis and the response of cascaded g IV enterement offerst of reacodine or underse aris in phrea input to the since the diage and their applicitic of an offerst of reacodine or underse are undere	1. T	he course	e intends to pr	ovide a	n overvi	ew of th	e princ	iples, operat	ion aı	nd app	olicat	ion of the	
 2. This course relies on elementary treatment and qualitative analysis and makes use of simple models and equation to illustrate the concepts involved. 3. To provide an overview of amplifiers. 4. Sufficient knowledge is provided so that students will be able to use this course as the basis for other advanced courses like Analog Circuits and Linear IC's, Power Electronics etc. 5. Continue to enhance oral and written communication skills specifically directed to the practice of electronics engineering. Course Outcomes: After completion of this course students will be able to CO1: Acquire knowledge of semiconductor devices and their working mechanism. CO2: Analyze the circuit characteristics and compute its parameters. CO4: Design various electronic circuits. UNITS Descriptions Hrs. CO's Semiconductor diodes: Introduction to PN junction diode, Zener diode and its applications, Rectifiers, Regulators, Clipping and Clamping circuits, applications, Rectifiers, Regulators, Clipping and Clamping circuits, CO4, CO4 Dipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector feedback bias and voltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes. AC Analysis of BJT: Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response. Multistage Amplifiers, Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded an undered response insert and coupling work response. V 	a	nalog buil	ding blocks like	e diodes	, BJT et	c. for per	forming	g various fun	ctions	•			
3. To provide an overview of amplifiers. 4. Sufficient knowledge is provided so that students will be able to use this course as the basis for other advanced courses like Analog Circuits and Linear IC's, Power Electronics etc. 5. Continue to enhance oral and written communication skills specifically directed to the practice of electronics engineering. Course Outcomes: After completion of this course students will be able to CO1: Acquire knowledge of semiconductor devices and their working mechanism. CO2: Analyze various electronic circuit configuration. CO3: Analyze the circuit characteristics and compute its parameters. CO's Semiconductor diodes: Introduction to PN junction diode, Zener diode and its applications, Rectifiers, Regulators, Clipping and Clamping circuits, Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode. I Tunnel diode, Schottky diode, Varactor diode and their applications, 8 CO1, CO4, CO4 II Bipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes. 10 CO2, CO4 III Ac Analysis of BJT: Transistor of BJT: Transistor Model: rs Model, h-parameter model, Small Signal Analysis, BJT Frequency Re	2. T	is course relies on elementary treatment and qualitative analysis and makes use of simple											
4. Sufficient Knowledge is provided so that students will be able to use this course as the basis for other advanced courses like Analog Circuits and Linear IC's, Power Electronics etc. 5. Continue to enhance oral and written communication skills specifically directed to the practice of electronics engineering. Course Outcomes: After completion of this course students will be able to Course Outcomes: After completion of this course students will be able to COURDECTION COURDENT Students will be able to COURDECTION COURDENT Students will be able to COURDENT Course Outcomes: After completion of this course students will be able to COURDENT Course Outcomes: After completion of this course students will be able to COURDENT Course Outcomes: After completion of this course students will be able to COURDENT Course outcomes: COURDENT COURDENT Outcomes: Course outcomes: Outcomes: Outcon the circuit configuration.	т 3 Т	odels an	a equation to	illustrat amplifie	e the c	concepts	Involve	ea.					
Image: Second	4 S	ufficient k	nowledge is p	rovided :	so that s	students	will be	able to use t	his co	urse a	as the	basis for	
5. Continue to enhance oral and written communication skills specifically directed to the practice of electronics engineering. Course Outcomes: After completion of this course students will be able to CO1: Acquire knowledge of semiconductor devices and their working mechanism. CO2: Analyze various electronic circuit configuration. CO3: Analyze the circuit characteristics and compute its parameters. CO4: Design various electronic circuits. UNITs Descriptions Kernel diode, Schottky diode, Varactor diode and this applications, Rectifiers, Regulators, Clipping and Clamping circuits, Tunnel diode, Schottky diode, Varactor diode and their applications, Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode. II Bipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, emitter feedback bias, collector feedback bias and voltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes. 10 CO2, CO4 III Transistor BJT: Transistor BJT: Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response. 12 CO3 IV Multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded amplifier: dascading or more of the of demoding or wultage respo	ot	her adva	nced courses li	ike Anal	og Circu	its and L	inear l	C's, Power E	lectro	nics et	C.		
electronics engineering. Course Outcomes: After completion of this course students will be able to CO1: Acquire knowledge of semiconductor devices and their working mechanism. CO2: Analyze various electronic circuit configuration. CO3: Analyze the circuit characteristics and compute its parameters. CO3: Analyze the circuit characteristics and compute its parameters. CO3: Analyze the circuit characteristics and compute its parameters. CO3: Semiconductor diodes: Introduction to PN junction diode, Zener diode and its applications, Rectifiers, Regulators, Clipping and Clamping circuits, Tunnel diode, Schottky diode, Varactor diode and their applications, Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode. 8 CO1, CO4 II Bipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, emitter feedback bias, collector feedback bias and voltage divider bias, D.C. analysis of transistor icruits, load line and Q point, Transistor as a switch: cut-off and saturation modes. 10 CO2, CO4 III AC Analysis of BJT: Transistor as a switch: cut-off and saturation modes. 12 CO3 IV Multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier; coupling and frequency response of	5. C	ontinue to	enhance oral	and writ	ten com	municati	on skill	s specifically	direct	ed to	the p	ractice of	
Course Outcomes: After completion of this course students will be able to CO1: Acquire knowledge of semiconductor devices and their working mechanism. CO2: Analyze various electronic circuit configuration. CO3: Analyze the circuit characteristics and compute its parameters. CO4: Design various electronic circuits. UNITS Descriptions Hrs. CO's Semiconductor diodes: Introduction to PN junction diode, Zener diode and its applications, Rectifiers, Regulators, Clipping and Clamping circuits, Tunnel diode, Schottky diode, Varactor diode and their applications, Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode. 8 CO1, CO4 II Bipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, emitter feedback bias, collector feedback bias and voltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes. 10 CO2, CO4 III Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response. 12 CO3 IV Multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded of multi-stage amplifier a purchage av	el	ectronics	engineering.										
Consection of this course students will be able to CO1: Acquire knowledge of semiconductor devices and their working mechanism. CO2: Analyze various electronic circuit configuration. CO3: Analyze the circuit characteristics and compute its parameters. CO4: Design various electronic circuits. UNITs Descriptions Hrs. CO's Semiconductor diodes: Introduction to PN junction diode, Zener diode and its applications, Rectifiers, Regulators, Clipping and Clamping circuits, Tunnel diode, Schottky diode, Varactor diode and their applications, Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode. 8 CO1, CO4 II Bipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, emitter feedback bias, collector feedback bias and voltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor BJT: Transistor dodel: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response. 12 CO3 IV Multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded average average and frequency response of cascaded average average average avera	Course O	utoomoo:											
And control of the control control of the control	After com	nletion of	this course stu	idents w	ill he ah	le to							
CO2: Analyze various electronic circuit configuration. CO3: Analyze the circuit characteristics and compute its parameters. CO4: Design various electronic circuits. UNITs Descriptions I Semiconductor diodes: Introduction to PN junction diode, Zener diode and its applications, Rectifiers, Regulators, Clipping and Clamping circuits, Tunnel diode, Schottky diode, Varactor diode and their applications, Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode. 8 CO1, CO4 II Bipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, emitter feedback bias, collector feedback bias and voltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes. 10 CO2, CO4 III AC Analysis of BJT: Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response. 12 CO3 IV multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded amplifier: diagnafication of anyles or cascaded amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded amplifier: diagnafication of cascaded amplifier of any output on crime ratio prices from crime trains of theose in the component of theose in the compone for theose in the compone for theose in th	CO1: Aco	uire know	ledge of semic	conducto	or device	es and the	eir worl	king mechani	sm.				
CO3: Analyze the circuit characteristics and compute its parameters. CO4: Design various electronic circuits. UNITs Descriptions Hrs. CO's I Semiconductor diodes: Introduction to PN junction diode, Zener diode and its applications, Rectifiers, Regulators, Clipping and Clamping circuits, Tunnel diode, Schottky diode, Varactor diode and their applications, Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode. 8 CO1, CO4 II Bipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, emitter feedback bias, collector feedback bias and voltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes. 10 CO2, CO4 III AC Analysis of BJT: Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response. 12 CO3 IV Multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded protein and pr	CO2: Ana	lyze vario	ous electronic o	circuit co	onfigurati	ion.		gcoa					
CO4: Design various electronic circuits. UNITs Descriptions Hrs. CO's I Semiconductor diodes: Introduction to PN junction diode, Zener diode and its applications, Rectifiers, Regulators, Clipping and Clamping circuits, Tunnel diode, Schottky diode, Varactor diode and their applications, Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode. 8 CO1, CO4 II Bipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, emitter feedback bias, collector feedback bias and voltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes. 10 CO2, CO4 III AC Analysis of BJT: Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response. 12 CO3 IV Multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded average direct of company on a work and saturation phase inparts 8 CO2	CO3: Ana	lyze the c	rcuit characte	ristics a	nd comp	ute its pa	aramete	ers.					
UNITsDescriptionsHrs.CO'sISemiconductor diodes: Introduction to PN junction diode, Zener diode and its applications, Rectifiers, Regulators, Clipping and Clamping circuits, Tunnel diode, Schottky diode, Varactor diode and their applications, Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode.8CO1, CO4IIBipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, emitter feedback bias, collector feedback bias and voltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes.10CO2, CO4IIIAC Analysis of BJT: Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response.12CO3IVMultistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded overage affect of encapading on voltage are in private are in private are in private area.8CO2	CO4: Des	ign variou	us electronic ci	rcuits.									
ISemiconductor diodes: Introduction to PN junction diode, Zener diode and its applications, Rectifiers, Regulators, Clipping and Clamping circuits, Tunnel diode, Schottky diode, Varactor diode and their applications, Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode.8CO1, CO4IIBipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector feedback bias and voltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes.10CO2, CO4IIIAC Analysis of BJT: Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response.12CO3IVMultistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded applied and frequency response of cascaded applied to according on voltage or parameter prime of cascaded application of 	UNITS]	Descripti	ons				Hr	s.	CO's	
Iits applications, Rectifiers, Regulators, Clipping and Clamping circuits, Tunnel diode, Schottky diode, Varactor diode and their applications, Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode.8CO1, CO4IIBipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, emitter feedback bias, collector feedback bias and voltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes.10CO2, CO4IIIAC Analysis of BJT: Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response.12CO3		Semicor	ductor diodes:	Introduc	tion to F	N junctio	on diod	e, Zener diod	le and				
ITunnel diode, Schottky diode, Varactor diode and their applications, Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode.8CO4IIBipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, emitter feedback bias, collector feedback bias and voltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes.10CO2, CO4IIIAC Analysis of BJT: Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response.12CO3IVMultistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded evotame offect of economing and frequency response of cascaded evotame offect of economing and frequency response of cascaded8CO2		its appli	cations, Rectif	iers, Re	gulators	, Clippin	g and	Clamping ci	rcuits,			CO1	
Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode. Optoelectronic devices: PIN diode, Light Emitting Diode (LED), Laser diode. II Bipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, emitter feedback bias, collector feedback bias and voltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes. 10 CO2, CO4 III AC Analysis of BJT: Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response. 12 CO3 IV Multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded exceeding on voltage or private action prive private action private action private a	I	Tunnel	diode, Schottl	ky diode	e, Varac	tor diod	e and	their applica	ations,	8		CO1, CO4	
diode. Bipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, emitter feedback bias, collector feedback bias and voltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes. 10 CO2, CO4 III AC Analysis of BJT: Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response. 12 CO3 IV Multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded explanation provement price phase input 8 CO2		Optoele	ctronic device	s: PIN c	diode, Li	ight Emi	tting D	iode (LED),	Laser			001	
IIBipolar Junction Transistors (BJTs): Physical structure and operation modes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, emitter feedback bias, collector feedback bias and 		diode.											
IImodes, Transistor as an amplifier, Basic BJT amplifier configuration: common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, emitter feedback bias, collector feedback bias and voltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes.10CO2, CO4IIIAC Analysis of BJT: Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response.12CO3IVMultistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded evolution a price diagonal and provide a constraint price action and frequency response in putting and frequency response in putting a price diagonal analysis8CO2		Bipolar	Junction Tran	sistors ((BJTs):	Physical	struct	ure and ope	ration				
II common emitter, common base and common collector amplifiers, Biasing the BJT: fixed bias, emitter feedback bias, collector feedback bias and voltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes. 10 CO2, CO4 III AC Analysis of BJT: Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response. 12 CO3 IV Multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded exclamation phase input to the second phase input to the s		modes,	Transistor as	an am	olifier, B	asic BJ	T_ampl	lifier configur	ation:				
Intel BJT: Inxed bias, emitter reedback bias, collector reedback bias and voltage divider bias, D.C. analysis of transistor circuits, load line and Q point, Transistor as a switch: cut-off and saturation modes. CO4 III AC Analysis of BJT: Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response. 12 CO3 IV Multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded exceeded exceeded and frequency response of cascaded exceeded exceed	П		emitter, comn	non base	e and co	mmon c	ollector	amplifiers, E	siasing	1(0	CO2,	
III AC Analysis of BJT: Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response. 12 CO3 IV Multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded exercise a consider on voltage are primer and response of cascaded exercise a consider on voltage are primer and response of cascaded 8 CO2		the BJI	divider blas, el		edback	plas, col		reedback bla	s and O			004	
III AC Analysis of BJT: Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response. 12 CO3 IV Multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded evoteme offect of cascading on voltage grip overant grip phase input 8 CO2		point Tr	ansistor as a s	witch c	ut-off an	d saturat	ion mo	ides	anu Q				
III Transistor Model: re Model, h-parameter model, Small Signal Analysis, BJT Frequency Response. 12 CO3 IV Multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded evolutions officiated of cascading on voltage grip evolution phase input 8 CO2		AC Ana	vsis of BJT:										
BJT Frequency Response. Multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded 8 CO2		Transist	or Model: re N	lodel, h-	paramet	ter mode	el, Sma	II Signal Ana	alysis,	1:	2	CO3	
IV Multistage Amplifiers: Multistage or Cascade amplifier: classification of multi-stage amplifier, coupling and frequency response of cascaded 8 CO2		BJT Fre	quency Respo	nse.									
IV multi-stage amplifier, coupling and frequency response of cascaded 8 CO2		Multista	ge Amplifiers:	Multista	ge or C	ascade	amplifie	er: classificat	ion of		Т		
	IV	multi-sta	age amplifier,	coupling	g and f	requency	/ respo	onse of cas	caded	8		CO2	
systems, effect of cascading on voltage gain, current gain, phase, input		systems	, enect of case	cauing o	n voitag	idth of	cascad	yain, phase, led or multi	input stage				

	amplifiers. Types of coupling, cascade theorem, Darlington pair, bootstrap circ	and cascode circuits, Miller cuit.		
V	Tuned Amplifiers: Single tuned, do amplifiers characteristics and their freq Class A large signal amplifiers, second coupled audio power amplifier, Class push pull and Class C power amplifiers types of distortion.	uble tuned and stagger tuned uency response. Power amplifier: -harmonic distortion, Transformer B amplifier, Class AB operation . Comparison of their efficiencies,	7	CO2
Guest Leo	tures (if any)			Nil
Total Hou	Irs		45	
Suggestiv	e list of experiments:			
1. To 2. To 3. To 4. To 5. To 5. To 6. To 8. To 9. To 10. To 11. To 12. To (0)	o draw the forward and reverse bias char o draw the characteristics of Zener diode o observe the waveform of Clamper circuit o observe the output waveform of Half w actor, Form Factor and Efficiency. (CO1) o observe the output waveform of Full wa nd Efficiency. (CO1) o plot common base input and output cha o plot common emitter input and output cha o plot common emitter clipper circuit using aggnitude as the input signal. (CO4) o design a negative clamper circuit using aggnitude as the input signal. (CO4) o draw the frequency response of two sta o draw the frequency response of two sta o CO2)	racteristics of a semiconductor PN j as a voltage regulator. (CO1) hit. (CO1) c. (CO1) vave rectifier. Calculate its paramet ave rectifier. Calculate PIV, Ripple F aracteristics for PNP bipolar junction haracteristics for NPN bipolar junction har	ers like l Factor, F n transist on transi) volt pe 0 volt pe ing transi	diode. PIV, Ripple orm Factor cor. (CO2) stor. (CO2) eak-to-peak eak-to-peak stor. (CO2) transistor.
Text Book 1. In 2. E 3. E 4. P	tegrated Electronics - Millman Halkias, T lectronic Devices & Circuits – Boyelstad lectronic Devices & Circuits – David A. B rinciples of Electronic Devices – Malvino	MH & Nashelsky – PHI ell – PHI TMH		
Reference 1. M 2. E 3. In 4. S	e Books- licroelectronic Circuits- Sedra, Smith. lectronics Circuits And Systems- Owen E tuitive Analog Circuit Design- Marc T. Th tarting Electronics (Fourth Edition)-Keith	Bishop ompson Brindley		
List and L 1. 2.	inks of e-learning resources: https://nptel.ac.in/courses/117103063/ https://www.electronics-tutorials.ws/			
The evalue end-seme	ation modes consist of performance in T ester examinations, and end-semester pra	wo mid-semester Tests, Quiz/ Ass actical examinations.	ignments	s, lab work,
	· · · · · ·			
Recomme	endation by Board of studies on	14.06.2022		
Approval	by Academic council on			
Compiled	and designed by			
œ.		XY AL P	. ,	
3	alling the free some	the for the set		Jo

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Department of Electronics Engineering Syllabus applicable to July 2022 admitted and later batches

Name of	the cou	urse:			B. Te	ch in E	Electron	ics & In	strumenta	ation E	inginee	ring		
Semeste	r and Y	'ear of s	tudy		B. Te	ch 1 st	Year 1 ^s	^t Seme	ester					
Subject (Categoi	'y			Engir	neering	g Scien	ce Cou	rse (ESC)				
Subject (Code: E	EIA102			Subje	ect Nar	ne: Fun	damen	tals of Ins	trume	ntation			
			Maxi	mum M	arks Al	lotted				6				
	Т	heory				Pra	ctical		Tatal		ntact H	ours		Total
End Ser	n Mi	d-Sem	Q	uiz	End	Sem	Lab- Work	Quiz	Marks	L	Т	Ρ	C	credits
60		20		20	3	0	10	10	150	3	0	2		4
Prerequi	sites [.]													
Basic F	ectrica	Conce	onts N	lathem	atics (Matric	es lar	lace T	ransform	Diffe	rential	Fous	ation	s and
	Variah		pt3, h	natricin	ail03 (iviatito	οs, L α _β		Tansionn	, Dine	i ci illai	Lque		
Course (Dhiectiv	<u>.</u>												
	so aim	s at pro	viding	the fun	damen	tal con	cents o	f the In	strumenta	tion a	nd Mea	euron	nont	static
and dyn	amic c	baracte	ristics	of inet	rument	ia con	their	arror a	nalveie r		nu mea	worvi.		of the
laborator	v inetr	umonte	euch		20 fu	nction	deners	otore n	nultimotor		lt ale		stud	or the
measure	ment o	f nassiv		rical ele	ments			1013, 1	nunnetei	3 610			Juu	53 the
		65. 22.			///////////////////////////////////////		, _, _,							
	moletio	n of the	course	s studo	nt will b	on able	a to							
000000	npieuo		course	, stude			5 10							
• (• (• (• (• (• (• (• (• (• (CO1: Identify, conceptualize, demonstrate and apply the fundamentals of measurement science, measuring instruments and their characteristics. CO2: Investigate and analyze the working of electrical measuring instruments. CO3: Analyze the working of Cathode Ray Oscilloscope (CRO) and other laboratory equipments. CO4: Analyze DC bridges used for measurement of Resistance. CO5: Analyze AC bridges used for measurement of Capacitance and Inductance. CO-PO Mapping POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO11 PO12													
CO1	3	2	2	1										
CO2	3	3	2	2		1						1		
CO3	3	3	2	2										
CO4	3	3	2	2										
CO5	3	3	2	2										
LINITe	Ű	Ŭ	-	_	Προ	rintio	16				Hr	c		`O'e
01113	Basic	conc	ont o	f Inctr	umont	ation	Funct	ional d	alomonte	of a	n 111	3.		.03
Ι	instru chara Instru	ment, cl cteristic ments, l	lassific s of Errors	ation of the in in meas	f meas strume sureme	uring i ents, nt, uno	nstrume Standar certainty	ents, sta ds & <u>v analys</u>	atic and d Calibrations	ynami ons c	of 12	2	(CO1
II	Analog Instruments:Classification of analog instruments, D' Arsonval type Galvanometer, Principle of operation and construction of various analog indicating types of instruments, sources of error, extension of ranges and calibration of ammeters & voltmeters.10CO3													
	Labo	ratory	Instru	iments	: Catl	hode	Ray (Oscillos amplitu	cope -	types	s, 0	3	(002

	frequency with CRO, Lissajous pattern (DSO), Spectrum Analyzers, Harmonic I Function Generators, Digital Multimeter,	is, Digital Storage Oscilloscope Distortion Measurement, Digital frequency meter.									
IV	Medium and High): voltmeter-ammeter method, ohmmeter, DC Bridges: Wheatstone bridge-design, arrangement of ratio arms, bridge sensitivity, errors in bridge circuits, Sensitivity and Calibration adjustments of Wheatstone bridge, Kelvin bridge, Various application of DC bridges, milli ohmmeter, mega ohmmeter, Meggar, Wagner earthing device										
V	Measurement of Inductance and Capacitance (A. C. Bridges): Measurement of inductance using A. C. Bridges: Maxwell's bridge, Various applications of Maxwell Bridges, Hay's Bridge, Anderson's Bridge, vector impedance meter, Q factor measurement.07CO4VBridge, vector impedance meter, Q factor measurement. Measurement of Capacitance using A. C. Bridges: Schering bridge, Wien's Bridge, storage and dissipation factors.07CO4										
Guest Le	ctures (if any)		Nil								
Total Ho	urs		45								
1. Study demo impo 2. Study 3. Study 4. Dete	of different parts of CRO. Measure the automatic of different parts of CRO. Measure the automatic on the term of CRT and constration unit and working of CRT and constraint sections. If of digital LCR meter and measurement of the term of universal frequency counter and measurement of unknown inductance using M	mplitude, frequency & phase diffe observe the effect of switched fau of unknown L, C, R parameters. surement of all parameters. axwell Inductance Bridge.	erence. Stu ilts on the	udy of CRO working of							
 meth 6. Meas 7. Meas 8. Meas 9. Meas 10. Meas 	od. surement of unknown value capacitance us surement of unknown value capacitance us surement of unknown value of Inductance surement of unknown value Inductance us	ising Wien's Capacitance Bridge. Ising Schering Bridge. Using Anderson Bridge. Sing Hay's Bridge.									
1. (ext Books - Cooper W.D., Helfrick A.D. "Modern Elect Hall. Sawhney A.K. "Electrical and Electronics I	ronic Instrumentation Measureme	ent", Prent	ice t Rai&							
3. [4. h	ons. Doeblin E.D., Measurement system, Tata Kalsi, Electronic Instrumentation, Tata Mc	McGraw Hill., 4th ed. Graw Hill	, <u> </u>								
Reference 1. Terma 2. Carr, List and	Reference Books 1. Terman & Petit, Electronic Measurement. 2. Carr, Instrumentation, Pearson Education List and Liste of a learning resources: MCET										
Modes of The eval	Evaluation and Rubric uation modes consist of performance in	n Two mid-semester Tests, Quiz	:/ Assignn	nents, term							
Recomm	endation by Board of studies on	07.06.2024									
Approval	by Academic council on										
Compileo	and designed by	Dr. Shilpa Datar									
Υ V	Annedi Vanlas gefetente Mena (the are of China Com	- Justan	ma							

				SAMR	AT ASH		ECHNOL	OGICAL	i				
I SHOK TECHNOL	DEICH AND	INSTITUTE (Engineering College), VIDISHA M P											
			(eering C	Olle(ge), VIDIS Affiliated to R	HA M.P.	21)				
ALL ALL	and the second sec		Pr	oaram	• Flectr	oni		mentati	on				
All calls di	MAN	Department of Electrical & Electronics Engg.											
Semest	er/Year II /I Program B.Tech												
Subject		Subject			Subject								
Category	B.Tech	Code:	E	EA104	Name:		Electrical N	lachine & Tr	ansfor	nsformer			
	Theor	Maxim	um N	larks Allotte	ed ical		Total	Contact H	ours	Total			
End Sem	Mid-Sem	, Quiz /	Ass	End Sem		Quiz	Marks	L T	Р	Credits			
60	20	10	10	30	10	10	150	3 0	0	3			
Prereauisit	tes:												
Basics of F	Physics, Matl	nematics											
Basics of e	electrical circ	uits											
1. F	amiliarize wi	th the basic	conce	pt of Powe	r in AC circu	uits.							
2. In 3. In	npart the kno	wledge of T	ransfo	ormer. d DC Motor	s Generato	irs and	Alternators						
Course Ou	itcomes:	meage of A				13 4114	Alternators.						
Course O	utcomes - C	n the succes	ssful (of this cours	se stuc	dent should be	able to:		2)			
CO2: Able	to analyse c	lifferent AC o	circuit	s, performa	ince of trans	forme	r and Electrica	I machines.	(BL3, B	2) 6L4)			
CO3: Eval	uate differer	t performan	ce pa	rameters of	f transforme	er and	electrical mach	nine (BL3, BL	5)				
AC/	DC machine	. (BL 3, BL 6	ficulis S).		de solution	to sin	ipie problems		ansion	ner and			
				Des	criptions				Hre	CO's			
UNITS	AC Circui	ts- Represe	entatio	on of sinus	oidal wave	forms,	peak and R	MS values,	1113.	003			
	phasor rep	resentation,	real	power, read	ctive power,	, appa	rent power, po	ower factor.		CO1,C			
I	combinatio	ins (series).	ase Three	phase bala	anced circui	יי וט ts, volt	tage and curre	nt relations	0	O4			
	in star and	delta conne	ctions										
	Single-pha	se transforn	ner ba	asic concer	romagnetisr	n, iviivi nstructi	ie, flux, and th	eir relation. ransformer		CO2.			
II	induced er	nf equation,	loss	es in trans	formers, th	ree ph	nase transform	ner and its	8	CO4			
	DC machi	ines (Motor	and	Generato	r)- Constru	ctional	details of D	C machine,					
	working pr	inciple of D	C ma	chines, cla	ssification of	of DC	machine, EM	F equation,		CO2,C			
111	of DC moto	or, Importance	ce of b	back EMF,	Starting of E	o gene	tor	ng principle	0	4			
			ion •		hood indus	tion	antori Canara						
	constructio	n, squirrel ca	age a	nd phase w	ound rotor,	slip, fr	requency of ro	tor current.		000.0			
IV	1-phase in	duction moto	or: Di	fference be	tween three	e phas	e and single	ohase	8	04			
	working pri	notor, types	ot sin	gie phase i	nduction mo	DIOP WI	In construction	i and					
	Synchron	ous Machir	ne (M	otor and	Alternators	s)- Mo	otor: stationery	/ armature,					
V	windina. sr	construction beed and free	i salie quenc	ent and no	on-salient ty	pe m	otor, function	of damper	8	CO2,			
	Alternator:	various typ	es of	alternator,	constructio	on wor	king principle,	generated		CO4			
Guest Lect	EMF equat	lion.											
0.000.000									40				

Suggestive lis	t of experiments:										
 To determan To determan a three place 	nine active power, reactive nine the line current, phanase balanced star conne	ve power, of a si ase current, line ected load. (CO2	ngle pha voltage, 2)	ase R-L serie phase volta	es circuit. (C02 ge, phase cu	2) rrent and total power of					
 To determine the transformation ratio and perform polarity test on a single phase transformer. (CO2) To conduct open circuit test and short circuit test on single phase transformer and calculate iron losses and copper loss (CO2) 											
5. To perfor 6. To deterr resistance	 To perform load test on single phase transformer and determine voltage regulation and efficiency. (C03) To determine the armature circuit resistance of series field winding resistance, shunt field winding resistance of DC machines. (C02) 										
 To perfor Speed co No-load to 	m a load test on 3 phase ntrol of DC shunt motor I est on Schrage motor (induction motor by field weakenin 3 phase inverte	and to ong and a	draw its perfo armature rhe tion motor) a	ormance char ostatic contro and to draw (acteristics (C02) I method (C02) graph between injected					
EMF Vs s 10. Speed co 11. Speed co 12. To determ	speed.(C02). ntrol of DC motor (CO2, ntrol of induction motor (nine the regulation of alte	CO3). CO2, CO3). ernator by synch	ronous i	mpedance m	nethod. (CO3).					
13. To plot th 14. To perfor	e V-curves of a synchror m the parallel operation of	nous motor at no of alternator with	load. (the exis	CO2). sting bus-bar	. (CO2)						
Reference Bo 1. Engi 2. Elect 3. Millm 4. Nagr 5. Hugt	oks- neering Circuit Analysis b rical machinery by Dr P nan, Halkias & Parikh, Int ath & Kothari, Basic Elec nes, Electrical and Electri	by William H hay S Bhimbra tegrated Electror ctrical Engineerir onic Technology	yt and K nics, Mc ng, III Ec v, Pearsc	imberly Graw Hill, II lition TMH. on Education	Edition IX Edition						
Modes of Eva	luation and Rubric										
Theory	Attendance (5)	Midsem (10)		Performan	ce (5)	Total (20)					
Theory	Attendance (5)	Assignmet (5)	-	00 (0)	Total (10)					
		Quiz (10)	,	-		Total (10)					
Practical	Attendance (5)	Lab Work (5)			Total (10)	I					
List/Links of e	learning resource				10(21(10)						
https	://nptel.ac.in/courses/108	8/108/10810807	6/								
IISC	banglore		<u>.</u>								
 https 	://nptel.ac.in/courses/108	8/105/10810513	2/								
IIT kharagpur											
Recommenda	tion by Board of studies	on	14/6/2	2							
Approval by Academic council on 16/6/22											
Compiled and	designed by		Prof. C	S Sharma/I	Dr. Jitendra K	umar Tandekar					
Subject hand	ed by department		Electri	cal and Elect	tronics Engg.						

UNDISKA	SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal) Department of Applied Science											
Semester/Ye	≏ar	First Se	em		Progr	am		B Ter	h			
Subject	Departmen	t Subjec	ct	MAR1(01	Subject	Linear	Algebra	bro and Calculus			
Category	al Core	Code	: Im Mar		tod	Name:	Enloar	T				
	Theo	ry			Pr	actical		Conta	act H	ours	Total	
End Sem	Mid-Sem	Quiz	Assi	gn	End	Lab-	Total Marks	L	т	Р	Credits	
60	20	10	mer 10	nt ·	Sem	VVOrk	100	3	1	-	4	
Prerequisit	es:	10		,			100			I	<u> </u>	
Basic of Di	fferentiation	s, Integratio	ons an	nd Matr	rices.							
Course Ob	jective:											
and linear a to advance applications Course Our	algebra. It a d level that s that they v tcomes:	ims to equ will serve t vould find u	ip the them v useful i	studen well tow in their	nts wi vards disci	th standard tackling m plines.	d concepts and nore advanced	l tools level of	at ar mat	h inte hema	ermediate atics and	
This course	e is to devel	op students	s abiliti	ies to:								
have a B 2. The Fallo Problems 3. Finding a 4. The Esse understat 5. Students	asic Unders outs of Parti s. area and Vo ential Tool nd Matrices s will Gain E	al Different lume using of Matrices and their A	Taylor tiation Doubl s and Applica with Pr	r's Theo that is le and Linear ation to roblem	Triple r Alg Solv	Maxima a damental to e Integrals. ebra in a e System o ing in Bool	and Minima. o Application o Comprehensiv of Linear Simul	f Analy e Manr taneous	sis to ner. s Equ h Th	5 Enç Stud uation	gineering ent will ns.	
UNITs				Des	scripti	ons			Ŀ	Irs.	CO's	
	Differentia	al Calculu	is: Le	ebnitz -	Theo	rem, Expa	ansion of func	tions b	y			
I	Maclaurins two variab Coordinate	s and Tayl les, Curvat es.	ors the	eorem Radius	(one and (variable), Centre of C	Maxima & M Curvature for C	inima c artesiai	of n	8	1	
П	Partial I Homogene and Appro	Differentia eous Funct ximations.	tion: tions, I	Partia Euler's	al C Theo	Derivatives Drem, Tota	of Higher I differentiatior	Orde , Errors	r, S	8	2	
111	Integral C in Summa Integration	Calculus : Definite Integral as a Limit of the Sum, Application ation of Series, Multiple Integrals, Change of order of 8 on, Application of Double and Triple Integrals (Area & Volume). 8									3	
IV	Matrix : Transform Equations Hamilton	Definition, ation, Rar and their s Theorem ar	Type nk of solutio nd its A	es & Matrix ons, Eig Applica	Prop , Co gen V ition te	erties of insistency alues and o find the I	Matrices, Ele of Linear Sy Eigen Vectors nverse.	mentar stem c , Cayle	y of y	8	4	

	Boolean Algebra & Graph Theory: Algebra of logic, Principal of		
V	Duality and basic theorem, Boolean expression and Boolean functions,	8	
	Definition of Graph, Types of Graphs, Sub Graphs, Walk, Path and		5
	Circuits,.		
TOTAL HO	DURS	40	
Reference	Books:		

- 1. Engg. Mathematics: By B.S. Grewal
- 2. Boolean Algebra: R.S. Agrawal
- 3. Engg. Mathematics: by H.K. Dass
- 4. Engg. Mathematics : By B. V. Rammanna

Recommendation by Board of studies on	14-06-2022
Approval by Academic council on	16-06-2022
Compiled and designed by	Applied Maths Board of Studies, Chairman Dr. Shailesh Jaloree

fuiledeur

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal) **Department of Humanities and Management** B. Tech All Branches II Year Program Semester/Year Subject Subject Subject Universal Human Values MAC MAC101 Name: Category Code: Maximum Marks Allotted Contact Hours Theory Practical Total Total Assign End Lab-Credits End Sem Mid-Sem Quiz Quiz Marks Т Р L ment Sem Work 00 00 00 00 60 20 100 Grade 20 -2 Prerequisites: During the Induction Program, students would get an initial exposure to human values through Universal Human Values - I. This exposure is to be augmented by this compulsory full semester foundation course. Course Objective: At the end of the course, the students will be able to: 1. Develop a holistic perspective based on exploration about others and themselves. 2. Develop clarity, importance of harmony and humanity towards family, society and nature/existence. 3. Strengthen self-reflection. 4. Develop commitment and courage to act. Course Outcomes: 1. By the end of the course, students will become aware of themselves, and their surroundings (family, society, nature) 2. They would have better critical ability. 3. They would become more responsible in life; and keeping human relationships and human nature in mind will be able to handle problems with sustainable solutions. 4. They would also become sensitive to their commitment towards nature and existence. 5. They would be able to apply what they have learnt to their own selves in different day-to-day reallife scenarios, at least a beginning would be made in this direction. UNITs Descriptions Hrs. CO's Introduction - Need, Basic Guidelines, Content and Process for Value Education 1. Self-Exploration-what is it? - Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for selfexploration 2. Continuous Happiness and Prosperity- A look at basic Human L 8 1 Aspirations 3. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority 4. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario

	5. Method to fulfil the above human aspirations: understanding and		
	living in harmony at various levels. Include practice sessions to discuss		
	natural acceptance in human being as the innate acceptance for living		
	with responsibility.		
	Understanding Harmony in the Human Being - Harmony in Myself!		
	1. Understanding human being as a co-existence of the sentient 'l' and		
	the material 'Body'		
	2. Understanding the needs of Self ('I') and 'Body' - happiness and		
	physical facility		
	3. Understanding the characteristics and activities of 'l' and harmony in		2
	- P	6	2
	4. Understanding the harmony of I with the Body: Sanyam and Health;		
	correct appraisal of Physical needs, meaning of Prosperity in detail		
	5. To ensure Sanyam and Health. Include practice sessions to discuss		
	the role others have played in making material goods. Identifying from		
	one's own life. Differentiate between prosperity and accumulation.		
	Understanding Harmony in the Family and Society- Harmony in		
	Human-Human Relationship		
	1. Understanding values in human-human relationship; meaning of		
	Justice (nine universal values in relationships) and program for its		
	fulfillment to ensure mutual happiness.		
	2. Understanding the meaning of Trust; Difference between intention		
	and competence.		
III	3.Understanding the meaning of Respect, Difference between Respect	4	3
	and differentiation; the other salient values in relationship.		
	4.Understanding the harmony in the society (society being an extension		
	of family): Resolution, Prosperity, fearlessness (trust) and co-existence		
	as comprehensive Human Goals.		
	5. Visualizing a universal harmonious order in society- Undivided		
	Society, Universal Order- from family to world family. Gratitude as a		
	universal value in relationships. Elicit examples from students' lives.		
	Understanding Harmony in the Nature and Existence - Whole existence		
	as Coexistence		
	1. Understanding the harmony in the Nature.		
	2. Interconnectedness and mutual fulfilment among the four orders of		
	nature recyclability and self-regulation in nature.		
IV	3. Understanding Existence as Co-existence of mutually interacting	8	4
	units in all-pervasive space.		
	4. Holistic perception of harmony at all levels of existence.		
	5. Include practice sessions to discuss human being as cause of		
	imbalance in nature (film "Home" can be used), pollution, depletion of		
	resources and role of technology etc.		
	Implications of the above Holistic Understanding of Harmony on		
	Professional Ethics		
	1. Natural acceptance of human values.		
	2. Definitiveness of Ethical Human Conduct.		
V	3. Basis for Humanistic Education, Humanistic Constitution and	9	5
	A Competence in preferrional ethics: a Ability to utilize the		
	4. Competence in professional ethics: a. Addity to utilize the		
	Ability to identify the seepe and obstactoristics of people friendly and		
	Ability to identify the scope and characteristics of people mendly and		
1	eco-menuity production systems, c. Ability to identify and develop	I	

	 appropriate technologies and management patterns for above production systems. 5. Strategy for transition from the present state to Universal Human Order: a. as socially and ecologically responsible engineers, technologists b. At the level of society: as mutually enriching institutions and organizations. 		
Guest Lectures (if any)		5	
Total Hours		40	
Suggestive list of experiments:			

Text Book-Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books-

1. JeevanVidya: EkParichaya, A Nagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.

2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

Modes of Evaluation and Rubric

Questionnaire, Quiz, Presentation and standard procedure will be followed .

List/Links of e-learning resource

https://fdp-aicte-india.org https://vvce.ac.in

26/02/2022
Dr. Manorama Saini and Dr. VeenaDatar
Humanities and Management

