

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA, M.P. (An Autonomous Institute Affiliated to RGPV Bhopal) Mechanical Engineering Department

Seme	Semester/Year V/III				Program				B.Tech.				
Subjec Categor	I DU I SUDIECI CODE' I SUDIECI NAME'		Subject Name:		Heat	sfer							
Maximum Marks Allotted									Contact Total				
	Theory Practical				Total		Hour	S	Credits				
End Sem	Mid-Sem Assignment		Quiz	End L Sem W		Quiz	Marks	L	Т	Р			
60	20	20 10 10		30 10 10		10	150	3	0	2	4		

Prerequisites:(Only for open electives)

Course Objective:

This course is designed to introduce a basic study of heat and mass transfer phenomena, develop methodologies for solving a wide variety of practical engineering problems, and provide useful information concerning the performance and design of particular systems and processes.

Course Outcomes:

- 1. Understand the basic modes of heat transfer and compute temperature distribution in steady and unsteady state heat transfer through conduction.
- 2. Heat transfer analysis of extended surfaces
- 3. Interpret and analyse forced and free convection.
- 4. Understanding the Principle of Radiation, Evaluation of heat transfer by radiation between different Geometries and basics of Mass Transfer.
- 5. Understand the basic modes of heat transfer and compute temperature distribution in steady and unsteady state heat transfer through conduction.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				2							1
CO2	3	3	2	2	2				1			1
CO3	3	3	2	2	1	1						1
CO4	3	3	2	2		1	1					1
CO5	3	2	3	2	1	1			1	1		1

Contents:			
UNITs	Descriptions	Hrs.	CO'
I	Basic Concepts: Modes of heat transfer, Fourier's law, Newton's law, Stefan Boltzmann law; thermal resistance and conductance, analogy between flow of heat and electricity, combined heat transfer process; Conduction: Fourier heat conduction equation, its form in rectangular, cylindrical and spherical coordinates, thermal diffusivity, linear one- dimensional steady-state conduction through a slab, tubes, spherical shells and composite structures, electrical analogies, critical-insulation- thickness for pipes, effect of variable thermal conductivity.	8	1
п	Extended Surfaces (fins): Heat transfer from a straight and annular fin (plate) for a uniform cross-section; error in measurement of temperature in a thermometer well, fin efficiency, fin effectiveness, applications; Unsteady heat conduction: heating and cooling of bodies with known temperatures distribution, systems with infinite thermal conductivity, response of thermocouples.	8	2
ш	Convection: Introduction, free and forced convection; principle of dimensional analysis, Buckingham 'pie' theorem, application of dimensional analysis of free and forced convection, empirical correlations for laminar and turbulent flow over flat plate and tubular geometry; calculation of convective heat transfer coefficient using data book.	8	3
IV	Heat Exchangers: Types- parallel flow, counter flow; evaporator and condensers, overall heat transfers coefficient, fouling factors, long-mean temperature difference (LMTD), method of heat exchanger analysis, effectiveness of heat exchanger, NTU method; Mass Transfer: Fick's law, equimolar diffusion, diffusion coefficient, analogy with heat transfer, diffusion of vapour in a stationary medium.	8	4
V	Thermal Radiation: Nature of radiation, emissive power, absorption, transmission, reflection and emission of radiation, Planck's distribution law, radiation from real surfaces, radiation heat exchange between black and grey surfaces, shape factor, analogical electrical network, radiation shields. Boiling and Condensation: Film-wise and drop-wise condensation; Nusselt theory for film-wise condensation on a vertical plate and its modification for horizontal tubes; boiling heat transfer phenomenon, regimes of boiling, boiling correlations.	8	5
Guest Lec	tures (if any)		
Total Hou	rs	40	
Suggestive	e list of experiments:		
1. Det	termination of Thermal Conductivity (k) of Metallic Solid.		
	rced Convection Heat Transfer (h) analyses.		
	t the Temperature Distribution (Radial) in Lagged pipe and determin nductivity (k) of pipe insulation.	ethe T	herm

4. Analysis of Parallel flow and counter flow heat exchanger, effectiveness and heat transfer

rate (Parallel and counter flow heat exchanger Apparatus)

- 5. Study of 'Twin Slab' Guarded Hot Plate Apparatus
- 6. Determine the Emissivity of the test plate (Emissivity Apparatus)
- 7. Determination of Thermal Conductivity (k) using Spherical Apparatus
- 8. Study of Composite Slab Apparatus
- 9. Analysis of Dropwise & Filmwise Condensation (Dropwise & Filmwise Apparatus)
- 10. Analysis of Critical Heat Flux (Heat Flux Apparatus)

Text Books-

- 1. Holman JP; Heat transfer; TMH
- 2. Sachdeva RC; Fundamentals of engineering heat and mass transfer.

Reference Books-

- 1. Sukhatme SP; Heat and mass transfer; University Press Hyderabad
- 2. Holman JP; Heat transfer; TMH
- 3. Dutta Binay K; Heat Transfer; PHI
- 4. Kumar DS; Heat and mass transfer; S.K. Kataria and Sons Delhi
- 5. Kreith; Heat transfer,
- 6. Gupta & Prakash; Engineering heat transfer.

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 30 sessional marks and 60 semester End-term Marks. The practical marks are 40, out of which 30 marks will be awarded for viva voce and 10 marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid-semester, 20 marks to be awarded for day-to-day performance and Quizzes/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by the Board of Studies on	Date:
Approval by the Academic Council on	Date:
Compiled and designed by	Name 1. Dr.Gopal Kumar Deshmukh
Checked and approved by	Name 1. Dr. Sanjay Katarey

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

					5	01						
Semes	ter/Y	ear	V/III		Prog	ram	B.Tech.					
	Subject CategoryDCSubject Code:ME		ME-5	502 Subject Name:			Operations Research					
	•	÷	Maximum M	arks A	llotted	Contact Ho			Uours	Total		
		The	ory			Practica	1	Tatal		naci	nours	Credits
End Sem	Mid-Sem		Assignment Q		End Sem	Lab- Work	Quiz	Total Marks	L	Т	Р	
60	50 20		10	10				100	3	1		4

Prerequisites:(Only for open electives)

Course Objective:

- To understand the methodology of OR problem solving and formulate linear programming problem.
- 2. To develop formulation skills in transportation models and finding solutions
- To understand the basics in the field of game theory and assignment problems
- To know how project management techniques help in planning and scheduling a project

Course Outcomes:

After completion of the course, students would be able to –

1. Analyze and solve linear programming by simplex method and Big M Method.

2. The students will be able to analyze and evaluate assignment and Transportation problems to find solutions and optimize costs.

3. The students will be able to apply PERT/ CPM tools for optimizing time and cost in project management.

4. Model competitive real-world phenomena using concepts from game theory. Analyse pure and mixed strategy games.

5. Provides students with analytical skills that are necessary for the understanding of inventory and warehousing management knowledge and principles

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2									
CO2	3	2	2	1								
CO3	3	2	2		2							
CO4	3	2	2									
CO5	3	3									3	

Content			
UNITs	Descriptions	Hrs.	CO's
Ι	Introduction: Origin of Operation Research, Historical Standpoint, Methodology, Different Phases, Characteristics, Scope and Application of Operations Research. Linear Programming (LP): Concepts, Formulation of model, Graphical solution, Maximisation / Minimisation – Simplex Algorithm, Use of slack / surplus / artificial variables, and Big M Method.Dual problem – relation between primal and dual, Dual simplex method – Interpretation of dual variables,	8	1
II	Transportation Problems: Types of transportation problems, mathematical models, transportation algorithms, methods for IBFS, Stepping Stone and MODI method. Assignment: Assignment Problem formulation, unbalanced assignment problem, Hungarian method, processing of job through machines.	8	2
ш	Network Techniques: Role of network Techniques in project Management, Basic Tools and Techniques of Project management, PERT-background and development, networking, estimating activity time, Determination of Earliest Expected and Latest allowable times, Determination of Critical Path, Applications of PERT, Critical Path Method (CPM), Numbering the events, Crashing, Resource allocation and smoothening.	8	3
IV	Game Theory: Introduction, Characteristics of Game Theory, Two Person, Zero sum games, Pure strategy. Dominance theory, Mixed strategies (2x2, mx2), Algebraic and graphical methods. Queuing Models: Basis of Queuing theory, elements of queuing theory, Kendall's Notation, Operating characteristics of a queuing system, Classification of Queuing models, Preliminary examples of M/M/1:∞/FCFA	8	4
V	Inventory Control: Type of inventories, Concept of inventory control, Objectives of inventory control, Inventory Cost, Economic Order Quantity, Inventory Model, ABC Analysis. Materials Management: Definition, Objectives, Scope and Responsibilities of Materials Management, Just in Time (JIT), Kanban System, Materials Requirement Planning (MRP).	8	5
Guest L	ectures (if any)		
Total H	ours	40	
	d Reference Books- Wayne L. Winston, "Operations Research" Thomson Learning,2003. Hamdy A. Taha, "Operations Research - An Introduction" Pearson Education R. Panneer Seevam, "Operations Research" PHI Learning,2008. Hira and Gupta "Introduction to Operations S.Chand and Co.2002 Hira and Gupta "Problems in Operations Research", S. Chand and Co2002.	n,2003.	

6. Wagner," Operations Research", Prentice HalOf India,2000.

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name : Jagdish Prasad Shakya
Checked and approved by	Name : Dr Sanjay Katarey

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

Se	emester/Yea	r	V/III		Pro	gram		B.Tech.					
Subje Catego		С	Subject Code:		ME- 503 Subject Name:			Machine Design					
	Th	Maxi	mum Ma	arks A		l Practica	1	Contact Hours				Total Credits	
	11	leor y			1	Tactica	1	Total		1	1		
End Sem	Mid-Sem	Assig	nment	Quiz	End Sem				L	Т	Р		
60	20	1	0	10	30	10	10	150	3	3 - 2		4	

Prerequisites:(Only for open electives)

Course Objective:

This course provides an understanding of design of machine component subjected to fluctuating load.

Course Outcomes:

- 1. Understand concepts of stress concentration in machine members and fatigue loading.
- 2. Design shafts and couplings
- 3. Design spring in dynamic loading conditions
- 4. Design rolling contact bearing
- 5. Design sliding contact bearing

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3										
CO2		3	3	2		1	1					1
CO3		3	3	2		1	1					1
CO4		3	3	2		1	1					1
CO5		3	3	2		1	1					1

Contents:			
UNITs	Descriptions	Hrs.	CO's
I	Stress concentration and fatigue: causes of stress concentration; stress concentration in tension, bending and torsion; reduction of stress concentration, theoretical stress concentration factor, notch sensitivity, fatigue stress concentration factor, cyclic loading, endurance limit, S-N Curve, loading factor, size factor, surface factor. Design consideration for fatigue, Goodman and modified Goodman's diagram, Soderberg equation, Gerber parabola, design for finite life, cumulative fatigue damage factor.	8	1
II	Shafts: Design of shaft under combined bending, twisting and axial loading; shock and fatigue factors, design for rigidity; Design of shaft subjected to dynamic load; Design of keys and shaft couplings.	8	2
III	Springs: Design of helical compression and tension springs, consideration of dimensional and functional constraints, leaf springs and torsion springs; fatigue loading of springs, surge in spring	8	3
IV	Rolling Contact Bearings: Types of Rolling-contact Bearings, Principle of Self-aligning Bearing, Selection of Bearing-type, Static Load Carrying Capacity, Stribeck's Equation, Dynamic Load Carrying Capacity, Equivalent Bearing Load, Load-Life Relationship, Selection of Bearing Life, Load Factor, Design for Cyclic Loads and Speeds, Needle Bearings Bearing Failure—Causes and Remedies, Lubrication of Rolling Contact Bearings, Mounting of Bearing	8	4
V	Sliding Contact Bearings: Basic Modes of Lubrication, Viscosity Measurement of Viscosity, Viscosity Index, Petroff's Equation McKee's Investigation, Viscous Flow through Rectangular Slot, Hydrostatic Step Bearing, Energy Losses in Hydrostatic Bearing, Reynold's Equation, Raimondi and Boyd Method Temperature Rise Bearing Design— Selection of Parameters, Bearing Constructions Bearing Materials, Sintered Metal Bearings, Lubricating Oils, Additives for Mineral Oils, Selection of Lubricants, Greases, Bearing Failure—Causes and Remedies Comparison of Rolling and Sliding Contact Bearings	8	5
Guest Leo	etures (if any)		
Total Hou	Irs	40	
Suggestiv	e list of experiments:		
2. Sh	ks- B. Bhandari: Introduction to Machine Design ingley J.E; Machine Design; TMH mesh Babu K and Srithar K; Design of Machine Elements; TMH		
2.	e Books- Wentzell Timothy H; Machine Design; Cengage learning Mubeen; Machine Design; Khanna Publisher Maleev; Machine Design;		

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. The practical marks are 50, out of which 30 marks will be awarded for viva voce and 20 marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1.Dr. Chandra Pal Singh
Checked and approved by	Name 1.Prof. Sandeep Jain

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

							0	0								
Semester/Year V/III						Program				B.Tech.						
Subje Categ		D	Ē	SubjectMCode:504		Subject Name				Energy Conversion Devices					Energy C	
	Maximum Marks Allotted Contact Hours Total Credits											Total Credits				
		T	heory			Practical			Tatal		mac	110015	Total Creuits			
End Sem		id- em	Assig	nment	Quiz	End Sem	Lab- Work	Quiz	Total Marks	L T		Р				
60	2	0	1	10	10	30	10	10	150	3 0 2 4			4			

Prerequisites:(Only for open electives)

Course Objective:

This course provides a simple understanding of the basic components of steam turbines, hydraulic turbines and the various combustion processes in spark-ignition (SI) and compression-ignition (CI) engines. The course contains Energy transfer in turbo machines, Steam turbines, water turbines, normal combustion and abnormal combustion of internal combustion engines.

Course Outcomes:

- 1. Understand the principles and application of Turbo Machines.
- 2. Analysis of steam turbine Machines.
- 3. Understand various types of hyrdaulic turbines and its applications.
- 4. Understand the Combustion phenomena and design for S.I. and C.I. Engines.
- 5. Understand the workings of various I.C. engine systems such as Fuel systems, and Lubrication systems.

			r				1		1			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	3	3						3
CO2	3	3		2	3	2						3
CO3	2	2	3			2						
CO4	3	1	2	1		1	2					1
CO5	2	3	3	2	2	3	1					

Content	s:		
UNITs	Descriptions	Hrs.	CO's
I	Energy transfer in turbo machines: application of first and second laws of thermodynamics to turbo machines, moment of momentum equation and Euler turbine equation, principles of impulse and reaction machines, degree of reaction, energy equation for relative velocities, one dimensional analysis only.	6	1
II	Steam turbines: impulse staging, velocity and pressure compounding, utilization factor, analysis for optimum U.F Curtis stage, and Rateau stage, include qualitative analysis, effect of blade and nozzle losses on vane efficiency, stage efficiency, analysis for optimum efficiency, mass flow and blade height. Reactions staging: Parson's stages, degree of reaction, nozzle efficiency, velocity coefficient, stator efficiency, carry over efficiency, stage efficiency, vane efficiency, conditions for optimum efficiency, speed ratio, axial thrust, reheat factor in turbines, problem of radial equilibrium, free and forced vortex types of flow, flow with constant reaction, governing and performance characteristics of steam turbines.	9	2
III	 Water turbines: Classification, Pelton, Francis and Kaplan turbines, vector diagrams and work-done, draft tubes, governing of water turbines. Centrifugal Pumps: classification, advantage over reciprocating type, definition of mano-metric head, gross head, static head, vector diagram and work done. Performance and characteristics: Application of dimensional analysis and similarity to water turbines and centrifugal pumps, unit and specific quantities, selection of machines, Hydraulic, volumetric, mechanical and overall efficiencies, Main and operating characteristics of the machines, cavitations. 	9	3
IV	Combustion in S.I. engines: Flame development and propagation, ignition lag, effect of air density, temperature, engine speed, turbulence and ignition timings, physical and chemical detonation, effect of engine and fuel variables on knocking tendency, knock rating of volatile fuels, octane number, H.U.C.R., action of dopes, pre-ignition, its causes and remedy, salient features of various type combustion chambers, valve timing and firing order, MPFI and its features	8	4
V	Combustion in C.I. Engines: Times base indicator diagrams and their study, various stages of combustion, delay period, diesel knock, octane number, knock inhibitors, salient features of various types of combustion chambers, fuel, ignition, cooling, exhaust and lubrication systems; Simple problems on fuel injection, various types of engines, their classification and salient features. Rotary I.C. engines, their principles of working, CRDI and its features	8	5
	ectures (if any)		
Total H	ours	40	

Suggestive list of experiments:

- 1. Study of Steam Power Plant Model (Steam Engine with Boiler) working.
- 2. Study of Impulse Turbine and Pure Reaction Turbine.
- 3. Performance of Pelton wheel turbine.
- 4. Performance of Francis turbine.
- 5. Performance of Kaplan turbine.
- 6. Study of Draft tubes.
- 7. Performance and analysis of four-stroke single-cylinder diesel engine test rig with electric dynamometer.
- 8. Performance and analysis of four-stroke four-cylinder petrol engine test rig with hydraulic dynamometer.
- 9. Load test in Ruston engine.
- 10. Load test in Variable compression ratio engine (VCR Engine).

Text Books-

- 1. Kadambi V Manohar Prasad; An introduction to EC Vol. III-Turbo machinery; Wiley Eastern Delhi.
- 2. Turbo Machines by A ValanArasu
- 3. Internal Combustion Engines by V. Ganeshan
- 4. Internal Combustion Engines by R.K. Rajput

Reference Books-

- 1. Venkanna BK; Turbomachinery; PHI
- 2. Shepherd DG; Turbo machinery
- 3. Bansal R. K; Fluid Mechanics & Fluid Machines;
- 4. Kearton W. J; Steam Turbine: Theory & Practice
- 5. A course in I.C. engines by M.L. Mathur& R.P. Sharma
- 6. Internal Combustion Engines by Domkundwar, Dhanpat Rai Publications

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. The practical marks are 50, out of which 30 marks will be awarded for viva voce and 20 marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1. Dr.Kamlesh Kumar Sharma
Checked and approved by	Name 1. Dr. Sanjay Katarey

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA, M.P. (An Autonomous Institute Affiliated to RGPV Bhopal) Mechanical Engineering Department

Ser	nester/Year	V/III]	Program			B.Tech.					
Subjec Categor		Subject Code:		IE- 4 (B)	Subjec	t Name	::	Gas Dynamics					
		Maximum N	Marks A	Allotte	d			Total					
	The	ory		Practical				Hours			Credits		
End Sem	Mid-Sem	Assignment	Quiz	End Sem	Lab- Work	Quiz	Total Marks	L	L T P				
60	60 20		10	30	10	10 10		3	0	2	4		

Prerequisites:(Only for open electives)

Course Objective:

This course provides the fundamentals of compressible fluid flow, emphasising a wide variety of steady, one-dimensional flow problems and a general understanding of the principles of multidimensional flow.

Course Outcomes:

- 1. Solve flow equations for quasi-one-dimensional flow through variable area ducts.
- 2. Analyze the flow through constant area ducts with friction and heat transfer.
- 3. Analyze flows with normal and oblique shocks.
- 4. Solve flow problems with supersonic velocities using shock-expansion theory.
- 5. Design experimental setup.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2				2	2					1
CO2	3	3	3	1	2	2	2					1
CO3	3	3	3	3	3	3	3					1
CO4	3	3	2	3	3	3	1					1
CO5	3	3	3	2	3	3	3	2	3	3	3	1

UNITs	Descriptions	Hrs.	CO's						
Ι	Introduction: Review of basic fluid dynamics, thermodynamic principles, and conservation equations for inviscid flows.	8	1						
Ш	Dimensional Flow: One-dimensional wave motion, normal shock waves, Oblique shockwaves, Prandtl-Meyer expansions and applications, Generalized one.	8	2						
ш	Nozzle Flow: Isentropic Flow with area change, flow with friction (Fannoaddition (Rayleigh flow), Method of characteristics (application to one isentropic flow).	8	3						
IV	IVSupersonic Flow: Velocity Potential Equation, Numerical Techniques for Steady SupersonicFlow, Time Marching Technique for Supersonic Blunt Bodies and Nozzles.8								
V Experimental setups: Shock Tubes, Compressible flow facilities, Measurement Techniques, Experiment Design.									
Guest Lec	tures (if any)								
Total Hou	Irs	40							
Suggestive	e list of experiments:								
00									
Text Book 1. Ba	•		_						
Text Book 1. Ba 2. R. Reference 1. 2. 3.	is- lachandran P; Gas Dynamics for Engineers; PHI Learning Yadav, Steam and Gas Turbines	ub.,20	13.						
Text Book 1. Ba 2. R. Reference 1. 2. 3. 4.	is- lachandran P; Gas Dynamics for Engineers; PHI Learning Yadav, Steam and Gas Turbines Books- Mahesh M Rathore, Thermal Engineering, TMH Anderson, J.D Jr., Modern Compressible Flows, Tata McGraw Hill, 2012. Yahya, S.M., Fundamentals of Compressible Flow, New Age International P	'ub.,20	13.						
Text Book 1. Ba 2. R. Reference 1. 2. 3. 4. Modes of	 Iachandran P; Gas Dynamics for Engineers; PHI Learning Yadav, Steam and Gas Turbines Books- Mahesh M Rathore, Thermal Engineering, TMH Anderson, J.D Jr., Modern Compressible Flows, Tata McGraw Hill, 2012. Yahya, S.M., Fundamentals of Compressible Flow, New Age International P Zucrow, M., Gas Dynamics, Wiley India, 2013 Evaluation and Rubric I be continuous evaluation for during the semester for 30 sessional marks and 	-							
Text Book 1. Ba 2. R. Reference 1. 2. 3. 4. Modes of There will End-term	 Iachandran P; Gas Dynamics for Engineers; PHI Learning Yadav, Steam and Gas Turbines Books- Mahesh M Rathore, Thermal Engineering, TMH Anderson, J.D Jr., Modern Compressible Flows, Tata McGraw Hill, 2012. Yahya, S.M., Fundamentals of Compressible Flow, New Age International P Zucrow, M., Gas Dynamics, Wiley India, 2013 Evaluation and Rubric I be continuous evaluation for during the semester for 30 sessional marks and 	-							
Text Book 1. Ba 2. R. Reference 1. 2. 3. 4. Modes of There will End-term Recomme	 S- lachandran P; Gas Dynamics for Engineers; PHI Learning Yadav, Steam and Gas Turbines Books- Mahesh M Rathore, Thermal Engineering, TMH Anderson, J.D Jr., Modern Compressible Flows, Tata McGraw Hill, 2012. Yahya, S.M., Fundamentals of Compressible Flow, New Age International P Zucrow, M., Gas Dynamics, Wiley India, 2013 Evaluation and Rubric be continuous evaluation for during the semester for 30 sessional marks and Marks. 	-							

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

				· •		0	P	-								
Semeste	Semester/Year V/III Pro							Program			B.Tech.					
Subject Category	DLC	Subj Cod		VIE-506		ıbject ame:		LAB-II								
		Marl	ks Allo	l	Contact Hours											
	Theo	ry			Practical			Total	Com		ours	Total Credits				
End Sem	Mid-S	em	Qu	ıiz	End Sem		Lab- Work	Total Marks	L	Т	Р					
-	-		-	•	30		20	50		1	2	3				

Prerequisites:(Only for open electives)

Course Objective:

The main learning objective of this course is all about learning and completing the exposure required for effective usage of the Ansys Workbench Software.

Course Outcomes:

- 1. Learn about different CAD software (including open source software)
- 2. Create virtual product in CAD environment
- 3. Create actual product using 3D printing machine

			P		- F	8		-					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012
CO1	3	3	3	1	3				2		2	3	3
CO2	3	3	3	1	3				2		2	2	2
CO3	3	3	3	1	3				2		2	2	2
Conten	its:												
UNITs	Des	criptior	IS									Hrs.	CO's
Creating CAD Parts in CAD software (CATIA, Open source software, produce assembly drawing, create at least one product using 3D printing machine. Practical sessions includes industrial and academic examples for learning how to apply Ansys Workbench software for efficiently performing different kinds of Simulations, HyperMesh											30		

Guest Lectures (if any)			
Total Hours			
Suggestive list of experiments: (if any)			
1.			
2.			
3.			
4.			
5.			
6.			
7.			
8.			
9.			
10.			
Text Books-			
1.			
Reference Books-			
1.			
Modes of Evaluation and Rubric			
There will be continuous evaluation for during End term Marks. The practical marks are 50, o and 20 marks for lab work. Out of 40 sessiona marks to be awarded for day to day performan will be a semester – End examination as per the	out of which 30 marks will be awarded al marks, 20 shall be awarded for Mid nce and Quiz/Assignments. For the 60	for viv	a voce ter, 20
Recommendation by Board of studies on	Date:		
Approval by Academic council on	Date:		
Compiled and designed by	Name 1.Dr. Chandra Pal Singh Name 2:-		
Checked and approved by	Name 1.Prof. Sandeep Jain		