

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

Semes	ter/Year	VI	/III	Program				B.Tech.				
Subjec Categor	ry DC	Sul	oject ode: M	ME-601 Subject Name:		ct :	Manufacturing Process					
		Μ	aximum Ma	Marks Allotted							Total	
	Т	heory		Practical			Total Marks	Hours			Credits	
End Sem	Mid- Sem	Quiz	Assignme	nt End Sem	Lab- Work	Quiz		L	Т	Р		
60	20	20	10	30	10	10	150	3	-	2	4	

Prerequisites:(Only for open electives)

Course Objective:

- Learn the fundamentals of lathe machine, their types and various operations which are performed on lathe
- Understanding of shaping and planning process, used machine and their application
- To understand the basic concepts of drilling, reaming and boarding and allied machines
- Learning of process of milling, grinding and finishing operations and their applications.

Course Outcomes:

- 1. Learn the various parts of the machine used in the manufacturing process
- 2. Understand the basic operations of the machines involved in metal cutting
- **3.** Classifications of machines and machining operations
- 4. Determine the appropriate manufacturing process(es) for the product to be made
- 5. Measure the material removal rate and the power required in various metal cutting operations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2			1							
CO2	3	2										
CO3	3	1										
CO4	3	2	2									
CO5	3	2			1							

Content	s:		
UNITs	Descriptions	Hrs.	CO's
I	Lathe Machine and operations Definition, working principle, Parts of the lathe, Lathe Accessories (work and tool holding devices), specifications of lathe, various types of lathe (Engine, Turret and Capstan lathe), Automatic lathes, Operating conditions, Material Removal Rate, Lathe operations (Turning, Facing, Boring, Drilling, Reaming, Threading, Knurling, Grooving, Parting, Chamfering), Methods of taper turning, Thread cutting attachment.	8	C01
п	Shaper & Planer Machine Construction of shaper, working principle, Specifications and types of shaper machine, Quick return mechanism, work holding devices for shaping, Special operations performed by shaper, Machining time and material removal rate. Construction of planer, Types of planning machine, specifications, work holding devices for planning, Operations performed by planner (planning of horizontal, angled, vertical and curved surfaces).	8	CO2
ш	Drilling Machine Drilling operations, Nomenclature of twist drill, Drill angles, Types of drilling machine, Cutting force and power required in drilling, Reaming operation, Types of reamer, Boring operations, Boring Machines types, Tapping, various type of taps.	8	CO3
IV	Milling and broaching Process Types of milling machine, Milling cutters, Arbors, Up and Down milling, Types of milling operations (straddle milling, form milling, gang milling, slotting, slitting), Indexing, Removal Rate. Types of work done on broaching machine. Simpletypes of broaches and their uses, Types of broaching machines	8	CO4
V	Grinding and Finishing Types of grinding machine (horizontal and vertical), centered and centerless grinding, electrochemical grinding, Grinding wheels and designation, dressing of grinding wheel. Honing and superfinishing, lapping, polishing, nano-polishing, deburring, Abrasive flow machining. Economics of grinding and finishing operations.	8	CO5
Guest L	ectures (if any)		
Total H	ours:	40	
Suggesti	ive list of experiments: (if any)		
Text Bo 1. S F 2. F	oks- beropeKalpakjian and Steven R. Schmid – ''Manufacturing Engineering and ' Prentice Hall – 2013 – 7th Edition PC Sharma "Production Technology" Publisher S Chand	Techno	logy' –

Hazra&Choudhary, "Workshop Tevhnology Vol. II" Tata Mc Graw Hill

Reference Books-

- 1. H.N. Gupta, "Manufacturing Processes, New Age International Publisher
- 2. E. P. DeGarmo, J. T. Black, and R. A. Kohser, "DeGarmo's materials and processes in manufacturing," John Wiley & Sons, 2011.
- 3. S. Kalpakjian, and S. R. Schmid, "Manufacturing processes for engineering materials," 5 th Ed. Pearson education, India, 2010

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1. Dr. Pradeep Singh Name 2:-
Checked and approved by	Name 1.Prof. Sanjay Jain

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA, M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

Sem	ester/Year	r VI/II	I	Prog	gram	B.Tech.						
Subjec Categor	t y DC	C Subject Code	ct ME : 602	ME- 602 Subject Name:		Au	logy					
	Т	Maximur `heorv	n Marks A	Allotted	Practical			Cont	act H	ours	Total Credits	
End Sem	Mid- Sem	Assignment	Quiz	End Lab- Sem Work Quiz		Quiz	Total Marks	L	Т	Р		
60	20	10	10	30	10	10	150	3	0	2	4	

Prerequisites:(Only for open electives)

Course Objective:

This course, designed to equip students with the knowledge, skills, and ethical mindset to design, analyse, maintain, and innovate, will prepare them to thrive in the rapidly changing automotive industry.

Course Outcomes:

- 1. Understand the basic layout of Automobiles, Chassis and frames.
- 2. Understand the Operation of transmission Suspension, Steering and Breaking system.
- **3.** Understand the role of electronics and control systems, focusing on the most recent developments in automotive technology.
- 4. Understand the different types of batteries and analyse their performance parameters.
- 5. Understand the battery charging requirements and develop the complete battery model.

							-					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2			1	1	1				
CO2	3	3	2	1			1					
CO3	3	3	2	1	1	1		1			1	
CO4	3	2	1	1	1	1	1					
CO5	1	1			3		2	1		1		1

Contents			
UNITS	Descriptions	Hrs.	CO's
I	Chassis & Body Engg: Types, Technical details of commercial vehicles, types of Chassis, layout, types of frames, testing of frames for bending & torsion on unutilised body frame, vehicle body and their construction, driver's visibility and methods for improvement, safety aspects of vehicles, vehicle aerodynamics, front wheel and rear wheel drive, four-wheel drive.	8	1
Π	Steering System: front axle beam, stub axle, front wheel assembly, principles of types of wheel alignment, front wheel geometry viz. camber, Kingpin inclination, castor, toe-in and toe-out, condition for true rolling motion, centre point steering, directional stability of vehicles, power steering, slip angle, cornering power, oversteer & understeer. Transmission System: Function and types of clutches, clutch lining and bonding, double-declutching, types of gear Boxes, synchronised, gear materials, determination of gear ratio for vehicles, automatic transmission, torque converters, fluid coupling, principle of hydrostatic drive, propeller shaft, differential gearbox, rear axle construction.	8	2
III	Suspension system: Basic suspension movements, Independent front & rear suspension, shock absorber, type of springs, location of shackles, power calculations, resistance to vehicle motion during acceleration and braking, power & torque curve, torque & mechanical efficiency at different vehicle speeds. Brakes: Principle of braking system, braking mechanism, mechanical and hydraulic brakes, power brakes, vacuum and air brakes. Wheels and Tyres: Wheel drum, tyre, materials and manufacturing of tyers, troubleshooting and maintenance.	8	3
IV	Electrical and Control Systems: construction and operation of lead acid battery, principle of operation of starting mechanism, different drive systems, starter relay switch, regulator electric fuel gauge, horn, wiper, Lighting system, headlight dazzling, exhaust gas recirculation, electronic control unit (ECU), turbocharging, Multi valve engines. Electric Vehicles: introduction & history; working concepts; main components of electric vehicles; infrastructures of electric vehicles; Challenges and future trends.	8	4
V	Types of Batteries: Lead Acid Batteries, Nickel-based Batteries: Introduction, Nickel-cadmium, Nickel metal hydride batteries, Sodium- based Batteries, Lithium Batteries, Metal-Air Batteries, Battery Charging and Modelling: Battery Charging, Battery chargers, Charge equalisation, The Designer's Choice of Battery, Use of Batteries in Hybrid Vehicles, Internal combustion/battery electric hybrids, Battery/battery electric hybrids, Combinations using flywheels, Complex hybrids, Battery Modelling, the purpose of battery modelling, Battery equivalent circuit, Modelling battery capacity, Simulation a battery at a set power, Calculating the Peukert Coefficient, Approximate battery sizing	8	5
Guest Le	ctures (if any)		
Total Ho	urs	40	

Suggestive list of experiments:

- **1.** To study and prepare a report on the construction details, working principles, and operation of an automotive vehicle.
- 2. To study and prepare a report on the construction details and working principles of the operation of the Automotive Engine and Sub Systems.
- **3.** To study and prepare a report on the construction details and working principles of the automotive transmission systems.
- 4. To study and prepare a report on the constructional details, working principles, and operation of the automotive drive lines and differentials.
- 5. To study and prepare reports on the constructional details of working principles of the operation of the Automotive Steering Systems.
- 6. To study and prepare a report on the construction details, working principles, and operation of the Automotive Suspension Systems.
- 7. To study and prepare a report on the construction details, working principles, and operation of the Automotive Brake systems.
- 8. To study and prepare a report on the construction details, working principles, and operation of Electric vehicle
- 9. To study and prepare a report on the construction details of battery technology in electric vehicles.
- 10. To study and prepare a report on battery thermal management and a complete model investigation.

Text Books-

- 1. Automobile Engg. TR Banga&Nathu Singh.
- 2. Barak (Ed.), T. Dickinson, U. Falk, J.L. Sudworth, H.R. Thirsk, F.L. Tye, "Electrochemical Power Sources: Primary & Secondary Batteries", IEE Energy Series 1, A. Wheaton & Co, Exeter, 1980.
- 3. Joseph Heitner, Automotive Mechanics, Principles and Practices, CBS Pub.

Reference Books-

- 1. Srinivasan S; Automotive engines; TMH.
- 2. Automobile Engg. GBS Narang.
- 3. Kripal Singh, Automotive Engineering Khanna Pub.
- 4. Newton & Steeds, Automotive Engineering.
- 5. James Larminie Oxford Brookes University, Oxford, UK John Lowry Acenti Designs Ltd., UK, Electric Vehicle Technology Explained
- 6. MehrdadEhsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 30 sessional marks and 60 semester End-term Marks. The practical marks are 50, out of which 30 marks will be awarded for viva voce and 20 marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid-semester, 20 marks to be awarded for day-to-day performance and Quizzes/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by the Board of Studies on	Date:
Approval by the Academic Council on	Date:
Compiled and designed by	Name 1. Dr. Gopal Kumar Deshmukh
Checked and approved by	Name 1. Dr. Ashish Manoria

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal) Mechanical Engineering Department

Semester/Year VI/III Program				B.Tech.								
Subje Catego	ory DE	-11	Subjec Code:	t N 60	ME- 603(A) Subject Name:		Mecha	tron	ics ar	utomation		
		Maximum Marks Allotted Contact Total								Total		
		Theory Practical						Hours Credit			Credits	
End Sem	Mid- Sem	Ass	signment	Quiz	End Sem	Lab- Work	Quiz	Total Marks	L	Т	Р	
60	20		10	10	30	10	10	150	3	0	2	4

Prerequisites Only for open electives)

Course Objective:

Study of Mechatronics and Automation is driven by several fundamental objectives, reflecting the multidisciplinary nature of these fields and their impact on various industries. Studying 7echatronics and automation equips individuals with the knowledge and skills needed to design intelligent, integrated systems, automate processes for efficiency and cost-effectiveness, and contribute to advancements in technology and innovation. The combination of these fields is particularly powerful in addressing the challenges of modern engineering and manufacturing

Course Outcomes:

- 1. Understand the Control System.
- 2. Analyze the Sensors and Transducers
- 3. Analyze the Hydraulic and Pneumatics system and Circuits
- 4. Understand the Robotics ,Actuators and programmable Logic Controllers.
- 5. Analyze the Automation and industry 4.0.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	2		3	3							
CO2	3			3								
CO3	3		3									
CO4	3				3							
CO5	3		3	2	3							

Contents:								
UNITs	Descriptions	Hrs.	CO's					
I	Mechatronics Systems: elements of 8echatronics systems, measurements systems, control systems, transfer functions, procedure for determining the transfer functions of a control systems, representation of a control system by block diagrams, modeling a control system, transient and steady state response, time response of a first order control systems, time response of second order control systems	8	1					
п	Sensors and Transducers, characteristics parameters used in transducers, displacement sensor, position sensors, proximity sensor, motion sensors, light sensors, liquid flow sensor, digital transducers, Incremental optical encoders, absolute optical encoders.	8	2					
III	Hydraulic and Pneumatic Actuating systems, Hydraulic systems, Pneumatic systems, control valves, components of electro pneumatic systems, Pneumatic and Hydraulic circuits.	8	3					
IV	Robotics and Programmable Logic Controllers :Degree of freedom of robotic system, robot joints, robot coordinates, robot characteristics, robot languages , classification of robots, application of robots, robot vision. Mechanical and electrical actuating systems, D.C. motors, A.C. motors, stepper motors, servomotor, programmable logic controllers, PLC programming, applications of PLC.	12	4					
V	Automation: introduction, Principles and Strategies of Automation, safety Monitoring, maintenance and repair Diagnostics, error Detection and Recovery, levels of automations, Merits and Demerits of automation. Automated Guided Vehicles (AGV's), Automated Storage and Retrieval System (ASRS), Automatic identification methods and Industry 4.0: Overview of							
	Frequency Identification, Other AIDC Technologies. Industry 4.0 strategy.							
Guest Lec	tures (if any)	Yes- 2						
Total Hou	rs	50						
Suggestive	e list of experiments:							
1 Obtain	the speed torque characteristics of AC Serve Motors							
2. Obtain	the speed torque characteristics of DC Servo Motors.							
3. Calibra	tion of LVDT KIT							
4. Determi	nation of force using strain gauge Kit.							
5. Determi	nation of Angle using Capacitive Pickup.							
6. Determi	nation of Pressure using Strain Gauge.							
7. Measurement of Temperature using Thermocouples.								
8. Study of	f ASRS.							
9. Study of	f Hydraulic and Pneumatic Actuator systems.							
10. Study	of PLC.							

Text Books-

- 1. Mechtronics, K P Ramchandran, Wiley India Pvt. Ltd.
- 2. Robotics : Introduction to Robotics by Saeed B Niku, Pearson Education Asia

Reference Books-

1. Mechatronics, W. Boltan, Pearson Education.

2. Mechatronics, N P Mahalik, Tata McGraw-Hill Publishing Limited

3. Modern Control Systems, Katsuhiko Ogata, Prentice Hall

4.Hydraulics and Pneumatics: A Technician's and Engineer's Guide" by Andrew Parr

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. The practical marks are 50, out of which 30 marks will be awarded for viva voce and 20 marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1.Dr.Ravindra Mohan Saxena
Checked and approved by	Name 1Dr. Pankaj Agarwal

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

Semester/Year VI/III				P	B.Tech.							
Subjec Catego	ry D	DE-II Sul	oject ode:	ME-603 (B)	Subject	Name:	Computer Integrated Manufacturing					
	r	Maxin Theory	um Ma	rks Allott	ed Practical			- Contact Hours Total Credit				
	-						Total					
End Sem	Mid- Sem	Assignment	Quiz	End Sem	Lab- Work	Quiz	Marks	L	Т	Р		
60	20	10	10	30	10	10	150	3	0	2	4	

Prerequisites Only for open electives)

Course Objective:

This course provides a simple understanding of the basic components of Computer Inegrated Manufacturing The course contains CIM, automation, control Strategies for automation, CAM, NC/DNC/CNC systems, Robot Technology, AS/RS, AGV systems, Group technology,FMS and Expert system.

Course Outcomes:

- 1. A knowledge of automated process in a modern manufacturing environment.
- 2. An understanding of using automation, control strategies towards numerical control, robotics, automated storage and retrieval system, CIM, expert systems in manufacturing.
- 3. An understanding of 10anufacturin manufacturing/ production strategies such as group technology, agilemanufaturing, FMS
- 4. Design and analysis of part program of cnc ,PLC, AS/RS, FMS, Robot programming

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2			2	1	2	1	3		3	3
CO2	3	2	1	1	3		2		3		3	2
CO3	3	2	1	1	3	1	3		3		3	1
CO4	2	3	3	3				1	3			1

Contents	:		
UNITs	Descriptions	Hrs.	CO's
Ι	Introduction- Introduction, Modern manufacturing, Integration and rationalization, Elements of CIM system, CIM hardware and software, Implementating CIM, Advantages and limitations	6	1
II	Automation and Production Systems- History of automation, Building block of automation technology, Types of automation systems, Automation production economics, Viability appraisal for automated production Control Strategies for Automation System- Control process, Electrical and Mechanical Analogies, Laplace Transform, Transfer Function, Linear and Non-linear systems, Adaptive Control, Logical Sequence Control, PLCs and Networking for Automation	10	2
ш	Computer Aided Manufacturing- Introduction, CAM hierarchy, Elements of CAM systems, CNC machine types, Classification, File Formats, Controllers, Hierarchical controls, Tooling on CNC, Fixtures on CNC, Rationale for CAD/CAM, NC, DNC, CNC and Adaptive control, Methods of Part-programming, CAM softwares	8	3
IV	Robot, Automated Material Handling and Storage system- Robot anatomy, Robot Configuration, Robot control systems, Accuracy, Repeatability, End effectors, Robot programming, Robot languages, Robot applications, Automated material handling and storage system, Design of system, Automated guided vehicle systems, Automated retrieval systems.	8	4
V	GroupTechnology(GT),ComputerizedManufacturingPlanningSystem-Introduction, Part families, Part 11anufacturing11 and coding,Production flow analysis, Machine cell design, Celluar manufacturingsystems, Agile 11anufacturing, Flexible manufacturing systems(FMS),Types of flexibility and uncertainty.ExpertSystems-IntroductiontoexpertSystems-IntroductiontoexpertSystems-Intelligence	8	5
Guest Le	ectures (if any)		
Total Ho	purs	40	

Suggestive list of experiments:

- 1. Study of equipment available in CIM lab.
- 2. Study of Process Planning and Part Programming.
- 3. Study of Preparatory Functions (G- Codes)
- 4. Study of Miscellaneous Functions (M- Codes)
- 5. Preparation of a part program for given parts on CNC Lathe machine.
- 6. Preparation of a part program for given part on CNC Milling machine.
- 7. Study and part program preparation of AS/RS.
- 8. Study and Location setting of AGV.
- 9. Study and Location setting of Robotic Arm.
- 10. Study of working of the FMS by using CNC Lathe, CNC Milling, Transfer Conveyor, Robotic Arm, AS/RS, and AGV.

Text Books:

- 1. Production System & CIM by Groover: PHI
- 2. Automation Production Systems and Cmputer Integrated Manufacturing by Mikell P Groover: PHI
- **3.** Principle of Automation and Advanced Manufacturing Systems By Dr K C Jain and Sanjay Jain
- 4. Robotics- Control, Sensing, Vision and Intelligence by K S Fu, RC Gonzalez and C S E Lee: Tata McGraw Hills
- 5. CAD/CAM: Principles and Applications by P N Rao: Tata McGraw Hills
- 6. CIM: Principle of Computer Integrated Manufacturing by J B Waldner: John Wiley & Sons

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. The practical marks are 50, out of which 30 marks will be awarded for viva voce and 20 marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1.Prof Sanjay Jain and Prof Neeraj Sen
	Name 1.Dr Sanjay Katarey

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

Semester/Year V				III	P	B.Tech.						
Subje Catego	ct ory	DE-II	Subj Coo	ject le:	ME-603 (C)	Subj Nan	ect ne:	MODI TECHI L	TURING ',DIGITA NG)			
		N Theory	/laximu	ım Ma	arks Allotto	ed Practical		Contact Hours Total Credits				
End Sem	Mid Sem	- Assign	ment	Qui	z End Sem	Lab- Work	Quiz	Total Marks	L	Т	Р	
60 20 10 10				30	10	10	150	3	0	2	4	

Prerequisites:(Only for open electives)

Course Objective:

The students are expected to understand special machining process, micromachining process etc, also students to know the fundamental of manufacturing and Industry 4.0,gain the knowledge of machine learning and data analytics. Students also understand the basics of AI in area of Manufacturing science.

Course Outcomes:

- 1. To produce useful research output in machining of various material.
- 2. Application of knowledge to manage shop floor problem.
- 3. Emerging technologies to address IoT challenges.
- 4. Apply the smart factory concept in manufacturing industry.
- 5. Understand and apply the AI tool in manufacturing.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		1			2	1					1
CO2	2			2			2		2			1
CO3	1	2	1	2		1						
CO4	2		2		2			2				3
CO5	2		1		1	2		1				3

Contents:			
UNITs	Descriptions	Hrs.	CO's
Ι	MICRO MACHING AND NANO FABRICATION Theory of micromachining-Chip formation-size effect in micromachining-microturning, micromilling, microdrilling- Micromachining tool design-Micro EDM-Microwire EDM-Nano fabrication:LIGA, Ionbeametching,Molecularmanufacturingtechniques– Atomicmachining-Nanomachiningtechniques– Top/Bottom up Nano fabrication techniques - Sub micron lithographic technique, conventional film growth technique, Chemical etching, Quantum dot fabrication techniques – MOCVD – Epitaxy techniques.	5	1
П	RAPID PROTO TYPING AND SURFACE MODIFICATION TECHNIQUES Introduction – Classification – Principle advantages limitations and applications- Stereo lithography – Selective laser sintering –FDM, SGC, LOM, 3D Printing-Surface modification Techniques: Sputtering- CVD- PVD-Diamond like carbon coating-Plasma Spraying Technique Diffusion coatings-Pulsed layer deposition.	5	2
III	INTERNET OF THINGS FOR MANUFACTURING Technology of the IoT and applications, IoT data management requirements, Architecture of IoT, Issues in implementing IoT, Technological challenges, Design challenges in IoT -Standardization, Security and privacy, Infrastructure, Analytics, Design principles for connected devices -Embedded devices, physical design, online components, embedded coding system. Informed Manufacturing plant – Elements, IoT implementation in Transportation and logistics, Energy and utilities, Automotive Connected supply chain, Plant floor control automation, remote monitoring, Management of critical assets, Applications HCI and IoT world -Multilingual interactions Robotics and Autonomous Vehicles Sensing and data processing-Simultaneous mapping and localization-Levels of autonomy, Smart factories, Future research challenges	12	3
IV	SMART MANUFACTURING Industry 4.0:Basicprincipals and technologies of smart factory, Digitalization and Networked economy, Globalization and Emerging Issues, Artificial Intelligence nad Augmented reality in manufacturing ,human Robot collaboration, standards of industry 4.0 and cloud application, cloud Manufacturing and the connected factory, data analytics, Introduction and Importance and characteristics of Big data, Size of big data, Types of analytics ,model complexity, Over and Under fitting, Data management with Python Application in factory AND assembly line, food industry etc.	9	4
V	An Introduction to Implementing AI in Manufacturing Introduction, Potential of AI, challenges, Evolution of Artificial Intelligence, Opportunities for Artificial Intelligence in Manufacturing ,Hierarchical Approach to Manufacturing Systems, Artificial Intelligence for Manufacturing System Optimization Modeling and Performance Analysis, Artificial Intelligence for Manufacturing	9	5

	Applications of Human–Robot Collaboration ,Artificial Intelligence For									
	Process Monitoring, Diagnostics, Prognostics, Practical Implementation									
	Opportunities for Future									
Guest Lect										
Total Hour	40									
Suggestive	list of experiments:									

Text Books-

- 1. Serope Kalpakjian., "Manufacturing Engineering and Technology" Pearson Education, 2001
- 2. 2.Adrian McEwan and Hakim Cassimally, "Designing the internet of things", Wiley, 2013

Reference Books-

- 1. Bandyopadhyay. A.K., Nano Materials, New age international publishers, New Delhi, 2008, ISBN:8122422578.
- 2. Bharat Bhushan, Handbook of nanotechnology, springer, Germany, 2010.
- 3. Jain V.K., 'Introduction to Micro machining' Narosa Publishing House, 2011
- 4. Code Halos: How the Digital Lives of People, Things, and Organizations are Changing the Rules of Business, by Malcolm Frank, Paul Roehrig and Ben Pring, published by John Wiley & Sons.
- 5. Internet of Things: A Hands-On Approach by Vijay Madisetti, ArshdeepBahga, VPT; 1st edition 2014

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. The practical marks are 50, out of which 30 marks will be awarded for viva voce and 20 marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1.Neeraj Sen
Checked and approved by	Name 1.Dr Sanjay Katarey

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

Semester/Year VI/III				I	Program				B.Tech.					
Subje Categ	ect jory	DE-	III Subject Code	ct M : 604	E- I(A)	Subject N	Name:	Industrial Engineering and Management						
			Maximun	n Marks	Allotte	ed		Contact			ict	Total		
		T	`heory		Practical			Total	Hours Credits					
End Sem	Mi Se	id- em	Assignment	Quiz	End Sem	Lab- Work	Quiz	Marks	L	Т	Р			
60	2	20	10	10				100	3 1			4		

Prerequisites:(Only for open electives)

Course Objective:

Course Outcomes:

- 1. Able to perform Method Study and Time Study in a real time application using Modern Tools
- 2. Able to analyze Ergonomics and human factor demands of Industrial Environment
- 3. Able to prepare Planning related to Manufacturing
- 4. Able to suggest Jigs and fixtures as per job requirement
- 5. Able to analyze production process performance

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3			3	2				2	3	1	
CO2	3	2	2	2		3	1	1	1		2	
CO3	3	1	2						2	2	1	
CO4	3											
CO5	3	2		3	1				2	2	3	2

Contents:			
UNITs	Descriptions	Hrs.	CO's
I	Productivity: Concept of production, types of production, concept of productivity, production Vs productivity, factors influencing productivity, Moslow's theory of hierarchy of needs, productivity Vs standard of living.	8	1
Ш	Method Study: Introduction to work study, definition of method study, basic steps of method study, process chart, recording techniques, diagrams and templates, Therblig, micro-motion study, SIMO chart, memo-motion study, principles of motion economy.	8	2
III	Time Study: Procedure of work measurement, apparatus required for time study, Rating, measuring the job, elements, allowances, standard time , synthetic data , analytical estimating, PMTS, work factor, MTM, activity sampling , applications, numerical problems.	8	3
IV	Human Factors Engineering: Introduction to ergonomics and human factorsEngineering, physiological basis of human performance, Biomechanics, Psychology of work and work load perception, Physical work environment, Basis of ergonomic problem identification, Safety	8	4
V	Production Planning and control: Types of production function of production planning and control, organization of production planning and control, pre-planning operation, planning of productive capacity plant, requirements of special tooling like jigs and fixtures. Routing, loading, scheduling, dispatching and follow-up, production control in intermittent manufacture and continuous manufacturing, bar chart, operation chart, flow chart, Gantt chart, sequencing, numerical problems	8	5
Guest Lect	cures (if any)		
Total Hou	rs	40	

Suggestive list of experiments:

Text Books-

- 1. Benjamin .W. Neibel, Motion and Time Study, Richard D. Irwin Inc., Seventh Edition, 1982.
- 2. Barnes, R.M. Motion and Time study, John Wiley, 1980.
- 3. Stephen Konz, Work Design, Publishing Horizon Inc., Second Edition, 1979.
- 4. Industrial Engineering and Production Management by Jain, Verma&Kartikeya, Dreamtech Publication 2013.
- 5. Jain and Agrawal, Production Planning & Control and Industrial Management, Khanna publishers

Reference Books-

1. Buffa, sarin, Modern Production/Operations Management, 8/e, John Wiley & Sons

- 2. Bridger R.S., Introduction to Ergonomics, McGraw Hill, 1995
- 3. ILO, Work Study, ILO Publication.

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. The practical marks are 50, out of which 30 marks will be awarded for viva voce and 20 marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1.Dr. Chandra Pal Singh
Checked and approved by	Name 1.Prof. Sanjay Jain

Semester/Vear

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE
(Engineering College), VIDISHA M.P.
(An Autonomous Institute Affiliated to RGPV Bhopal)
Mechanical Engineering DepartmentVI/IIIProgramB.Tech.

					.	Dirtent						
Subje Catego	ct pry E	DE-III	Sub Coo	ject de:	ME- Subject 504(B) Name:			Produc	tion]	d Control		
		Ma		Contact Tota								
Theory]	Practical	Total	Hours Credits					
End Sem	Mid- Sem	Assignm	nent	Quiz	End Sem	Lab- Work	Quiz	- Total Marks	L	Т	Р	
60	20	10		10				100	3	1		4

Prerequisites:(Only for open electives)

Course Objective:

Course Outcomes:

After completion of the course, students would be able to -

- 1. Explain production systems and their characteristics.
- 2. Evaluate MRP and JIT systems against traditional inventory control systems.
- **3.** Evaluate basics of variability and its role in the performance of a production system.
- 4. Analyze aggregate planning strategies.
- 5. Apply forecasting and scheduling techniques to production systems

6. Apply theory of constraints for effective management of production systems

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3			3	2				2	3	1	
CO2	3	2	2	2		3	1	1	1		2	
CO3	3	1	2						2	2	1	
CO4	3											
CO5	3	2		3	1				2	2	3	2
CO6	3	2		3	1				2	2	3	2

Contents	:										
UNITs	Descriptions		Hrs.	CO's							
I	Introduction to Production Systems: & Characterization, Overview of Prod Review of EOQ & inventory control sy	Production Systems: Classification uction Planning and Control issues, estems	8	1							
II	Material Requirement Planning: I Requirement Planning, Structure of Planning Issues, Implementation Issue	Dependent Demand & Material MRP system, MRP Calculations, s.	8	2							
III	Just in Time Production Systems: Characteristics of JIT Systems, Co System, Strategic Implications of JIT systems.	Just-in-Time System: Evolution, ontinuous Improvement, Kanban System. Push and pull production	8	3							
IV	Aggregate Planning: Aggregate Plann and Aggressive Alternatives, Plann Master Production Scheduling.Flow Sl	ing: Purpose & Methods, Reactive ing Strategies, LP Formulation, hop, Job Shop Dispatching	8	4							
	Forecasting Methods: Demand Forecasting: Principles and Method										
V	V Theory of Constraints: Concept of bottleneck, Local and global optim Five steps of TOC approach, Performance measures.										
Guest Lectures (if any)											
Total Hours 40											
Suggestiv	ve list of experiments:										
Text Boo 1. Ki 2. C	ks- rajewski L.J. and Ritzmen L.P., "Oper dition, Pearson Education, 2010. Chase R.B. Jacobs F.R. and Aquilano Advantage", 11th Edition, Tata McGraw	ations Management: Strategy and A N.J., "Operations Management for Hill Book Company, New Delhi, 201	Analysi r Comj 0.	s", 9th petitive							
Reference	e Books-	1 0/ /									
1. He M 2. N E	opp W. J. and Spearman M. L. "F anagement", McGraw Hill Internationa Aukhopadhyay S.K., "Production Plar Cconomy Edition, 2013.	Factory Physics: Foundations of N al Edition, 3rd Edition, 2008. Aning and Control", 2nd Edition,	Ianufa PHI, F	cturing Eastern							
Modes of	Evaluation and Rubric										
There will	Il be continuous evaluation for during the Marks. The practical marks are 50, are	te semester for 40 sessional marks an	d 60 se	emester							
and 20 m	arks for lab work. Out of 40 sessional	marks, 20 shall be awarded for Mic	l semes	ster, 20							
marks to	be awarded for day to day performance	e and Quiz/Assignments. For the 60	Marks	s, there							
will be a s	semester – End examination as per the r	norms of AICTE.									
Arranges las Academia com elles Date.											
Approva	Approval by Academic council on Date:										
Complied	and designed by	maine 1.Dr. Unandra Pal Singn									
Checked	and approved by	Name 1.Prof. Sanjay Jain									

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal) **Mechanical Engineering Department** VI/III Program **B.Tech.**

3

Sen	Semester/Year VI/III				Program				B.Tech.					
Subjec Catego	ct ry D	E-III S	ıbject Code:	ME- 604(C) Subject Name:			Reliabi	lity Engineering and TPM						
Maximum Marks Allotted Theory Practical									Contact Hours			Total Credits		
End Sem	Mid- Sem	Assignmen	t Qui	z Ene Sen	d n	Lab- Work	Quiz	1 otal Marks	L	Т	Р			
60	20	10	10					100	3	1		4		

Prerequisites:(Only for open electives)

Course Objective:

Course Outcomes:

- 1. learn basic Concepts of Reliability and reliability distribution
- 2. analyze various reliability models
- 3. apply reliability testing methods
- 4. learn reliability centred maintenance
- 5. analyze failure modes and effects

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	1			1	1			1	1
CO2	1	2	3	3			1	1			2	
CO3	1	2	2	3			1	1			1	1
CO4	1	2	2	3			1	1			1	1
CO5	1	2	2	3			1	1			1	1

Conter	ts:									
UNITS	Descriptions	Hrs.	CO's							
I	Basic Concepts of Reliability: Probability distributions used in maintenance engineering- Binomial, Poisson, Exponential, Normal, Log- normal, Gamma and Weibull distribution; failure rate, hazard rate, failure modes, MTTR, MTBF, MTTF	8	1							
II	System Reliability Models: System reliability–n-component series systems, m-component parallel systems and combined system; standby systems; K-out-of-m systems; redundancy techniques in system design; event space, decomposition (Key Stone), cut and tie sets, Markov analysis, reliability and quality, unreliability, maintainability, availability	8	2							
III	 II systems; K-out-of-m systems; redundancy techniques in system design; event space, decomposition (Key Stone), cut and tie sets, Markov analysis, reliability and quality, unreliability, maintainability, availability Reliability Testing: Introduction, testing requirements, testing methods: Marginal Testing, Non- destructive testing, reliability tester, acceleration models, SWOT analysis IV Total Productive Maintenance: Evolution of TPM, TPM objectives, concept, pillars of TPM, Terro technology, Six Big Losses autonomous Maintenance. Reliability centered maintenance: concept, methodology, benefits V Failure Modes and Effects Analysis (FMEA) Failure Modes and Effects Analysis (FMEA) Failure Modes and Effects (FMECA):Overview, elements of FMECA applications and benefits, risk, evaluation, risk priority numbers, criticality analysis, process FMEA, qualitative and quantitative approach to FMECA; design FMEA and 									
IV	Total Productive Maintenance: Evolution of TPM, TPM objectives, concept, pillars of TPM, Terro technology, Six Big Losses autonomous Maintenance. Reliability centered maintenance: concept, methodology, benefitsFailure Modes and Effects Analysis (FMEA) Failure Modes and Effects									
v	Failure Modes and Effects Analysis (FMEA) Failure Modes and Effects Analysis (FMEA) Failure Modes, Effects and Criticality Analysis (FMECA):Overview, elements of FMECA applications and benefits, risk, evaluation, risk priority numbers, criticality analysis, process FMEA, qualitative and quantitative approach to FMECA; design FMEA and steps for carrying out design FMEA	8	5							
Guest	Lectures (if any)									
Total I	Iours	40								
Sugges	tive list of experiments:									
Toyt D	achta									
1 CAL D	Ebeling CE: An Introduction To Reliability & Maintainability Engg: TMH									
2.	Srinath L.S: Reliability Engineering: East West Press.									
3.	Naikan; Reliability engg and life testing; PHI									
4.	Kapur KC and Lamberson LR; Reliability in Engineering Design; Wilev India	l								
5.	Telang AD and Telang A; Comprehensive Maintanance Management; PHI									
6.	Mishra R.C; Reliability and Maintenance Engineering; New age International	publis	her.							
7.	Dhillon; EnggMaitainability- How to design for Reliability and easy maintena	nce; PE	II							
8.	Davidson John; The Reliability of mechanical system; Institution of Mec London	h. Enş	gineers,							

Reference Books-

- 1. Patrick D.T and O.'Connor; Practical Reliability Engineerin; John Wiley and Sons
- 2. Modarre M; Reliability and Risk Analysis, Marcel Dekker Inc CRC Press
- 3. Balaguruswamy; Reliability Engg; TMH

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. The practical marks are 50, out of which 30 marks will be awarded for viva voce and 20 marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1.Dr. Chandra Pal Singh
Checked and approved by	Name 1.Prof. Sanjay Jain

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

Semeste	er/Year	VI/III	Pro	gram		B.Tech.						
Subject Category	DLC	Subject Code:	ME- 606 Subject Name:				LAB-III					
		Maximun		— Contact Hours								
Theory			Practical			Tatal	Com		Jurs	Total Credits		
End Sem	Mid-Ser	n Quiz	End Sem	Lab- Work	Quiz	Marks	L T P					
-	-	-	30	20	10	50	-	-	4	2		

Prerequisites:(Only for open electives)

Course Objective:

The main learning objective of this course is all about learning and completing the exposure required for effective usage of the Ansys Workbench Software.

Course Outcomes:

After completion of the course, students would be able to perform-

- 1. Meshing of geometries analysis
- 2. Static Structural analysis
- 3. Modal analysis
- 4. Thermal, Thermo-structural analysis
- 5. buckling analysis
- 6. experiments on dynamics

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	11	PO12	
CO1	3	3	3	1	3				2				3	
CO2	3	3	3	1	3				2				2	
CO3	3	3	3	1	3				2				2	
CO4	3	3	3	1	3				2				2	
CO5	3	3	3	1	3				2				2	
Contents:														
UNITs	Des	cription	ıs									Hrs.	CO's	
	Han are of tl	Hands on exposure will be provided on some of the elective subjects that are included in V and VI semester under departmental category. Objective of this is to provide introductory exposure to subjects which could not be												

30

included as regular subjects.	30	
Practical sessions includes industrial and academic examples for learning		
how to apply Ansys Workbench software for efficiently performing different kinds of Simulations, HyperMesh		

Guest Lectures (if any)		
Total Hours		
Suggestive list of experiments: (if any)		
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		
Text Books-		
1.		
Reference Books-		
1.		
Modes of Evaluation and Rubric		
There will be continuous evaluation for during End term Marks. The practical marks are 50, o and 20 marks for lab work. Out of 40 sessiona marks to be awarded for day to day performan will be a semester – End examination as per the	the semester for 40 sessional marks and 60 sem out of which 30 marks will be awarded for viva I marks, 20 shall be awarded for Mid semestence and Quiz/Assignments. For the 60 Marks, norms of AICTE.	nester voce er, 20 there
Recommendation by Board of studies on	Date:	
Approval by Academic council on	Date:	
Compiled and designed by	Name 1.Dr. Chandra Pal Singh Name 2:	
Checked and approved by	Name 1.Prof. Sandeep Jain	

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE (Engineering College), VIDISHA M.P. (An Autonomous Institute Affiliated to RGPV Bhopal)

Mechanical Engineering Department

Semes	ter/Year	VI/III	Program				B.Tech.				
Subject Category	DLC	Subject Code:	ME 607	ME- 607 Subject Name:		Internship II & Semin		Seminar			
Maximum Marks Allotted							Contact Total		Total		
	The	eory		Practical			Total	Hours Credits			Credits
End Sem	Mid- Sem	Assignment	Quiz	End Sem	Lab- Work	Quiz	Marks	L	Т	Р	
				30	20		50	0	0	4	2

Prerequisites:(Only for open electives)

Course Objective:

The course objectives are designed to seamlessly align with the educational goals of the program, offering learners a structured framework for experiential learning. By integrating theoretical knowledge with practical application, these objectives aim to equip students with hands-on experience, enhance their professional skills, and provide insights into industry practices. The structured framework ensures that students engage meaningfully in their internship, fostering a dynamic learning environment that contributes to their overall academic and professional development.

Course Outcomes:

- 1. CO1:Demonstrate the application of engineering principles and technical skills in a realworld setting.
- 2. CO2:Exhibit professional conduct and ethical behaviour in engineering practice.
- 3. CO3:Plan, execute, and complete engineering projects within specified timelines.
- 4. CO4:Communicate technical information and collaborate within a multidisciplinary team.
- 5. CO5:Apply critical thinking skills to analyze and solve engineering problems.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO11	PO12
CO1		3		3								3
CO2												
CO3											3	3
CO4									3	3	3	
CO5		3		3								3
Contents:												
UNITS	De	Descriptions Hrs. CO's										
Ι	Ар	Applied Engineering Knowledge and Skills41										
II	Pro	ofessior	nal and E	thical H	Behavio	or					4	2
III	Pro	oject M	lanageme	ent and	Execut	tion					4	3
IV	Communication and Teamwork44											
V	Critical Thinking and Problem-Solving45											
Guest Lectures (if any)												
Total H	Total Hours 20											
Modes of Evaluation and Rubric												

Performance	Poor	Fair	Good	Excellent	PO's
Indicator	(50% OF	(60%	(80%	(100%) A/B/C/D/F)	
	A/B/C/D/E)	A/B/C/D/E)	A/B/C/D/E)	A/D/C/D/E)	
 [A] Timeline scheduled. [MARKS= 10% OF MAXIMUM MARKS] 	Not scheduled and not followed	Not scheduled and not followed	Scheduled but not followed strictly	Scheduled and followed strictly	PO8, PO11
 [B] Usage of the latest application and software [MARKS= 10% OF MAXIMUM MARKS] 	No latest applications and software's used	Slightly Outdated	Moderate Usage of new technology	latest applications and software are used	PO5
[C] Proper documentation work [MARKS=	Poor Documentation	Average documentation	Good Documentation	Excellent Documentation	PO10

20% OF MAXIMUM MARKS]					
[D] Presenting skills, Fluency, and Vocabulary [MARKS= 30% OF MAXIMUM MARKS]	Poor Skills	Less confidence, vocabulary needs to be improved	Good confidence, but lack of communication skills	Good confidence, but lack of communication skills	PO10
[E]SlideOrganizationandContentstime conscious[MARKS=30%OFMAXIMUMMARKS]	Poor Organization and least time management	Content is not organized properly	Content is organized properly but no effective time management	Content is organized properly and effective time management	PO10

There will be continuous evaluation during the semester for 50 practical marks.

The practical marks are 50, out of which 30 marks will be awarded for Power Point Presentation and 20 marks for lab work.

20 marks for lab work to be awarded for day-to-day performance.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Name 1.Dr. Ravindra Mohan
Checked and approved by	Name 1.Dr. Ashish Manoria