

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE VIDISHA (M.P.)

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV Bhopal)

Scheme of Examination (Semester-IV) Bachelor of Technology (B. Tech.) – Electronics and Communication Engineering

Providence of the second secon	Contraction of the second s		fo	r Batch	Admitted in	n sessio	on - 20	23-24 a	and on	wards				
~ 1 .	<u> </u>					ım Mark	r			I	Co	ntact H	Irs	
Subject	Subject	Subject Name			Theory			Practica	ıl 👘	Total		indet i		Total
Code	Category		ES	MS	Assignment	Quiz	ES	LW	Quiz	Marks	L	Т	Р	Credits
MAB- 401	BSC	Numerical Methods & Complex variables	60	20	10	10	-	-	-	100	3	1	0	4
EC-402	DC	Analog Circuits	60	20	10	10	30	10	10	150	3	0	2	4
EC-403	DC	Antenna & Wave Propagation	60	20	10	10	30	10	10	150	3	0	2	4
EC-404	DC	Digital Communication	60	20	10	10	30	10	10	150	3	0	2	4
EC-405	DC	Control System	60	20	10	10	-	-	-	100	3	0	0	3
EC-406	DL	Simulation Lab-I	-	-	-	-	60	20	20	100	0	2	2	3
	To	tal	300	300 100 50 50 150 50 50 750 15 3 8										
ILC	Extraci	urricular Activities	Based on participation in extra curriculum activities, one credit per year to be endorsed in the eight semester mark sheet.											

Please add / delete additional rows if required

Internship-II (90 Hrs) External /Institute Level to be evaluated in Vsemester

Please add / delete additional rows if required.

Abbreviations: ES -End Semester, MS- Mid Semester, LW- Laboratory Work/Assignment. (L: Lecture, T: Tutorial, P: Practical) BSC- Basic Science Course, ESC- Engineering Science Course, HSMC- Humanities Science and Management Course, MAC- Mandatory, Audit Course, AC- Audit Course, HEC- Holistic Education Courses: NSS/NCC/NSO, ITC- Information Technology Course, ILC-Institute Level Course, DC- Department Course, DE-Department Elective, OC-Open Course, DLC- Department Laboratory, PROJ- Project Work, VA-Value Added Course

				SA	MRAT	ASHO	K TECH	INOLOGIC	CAL II	NSTIT	UTE		
A					Œ	ngineer	ing Coll	lege), VIDIS	SHA M	I.P.			
B													
The	ALL C			(Ar	Auton	omous	Institute	e Affiliated	to RG	PV Bh	opal)		
-	a the					-		tronics Eng		-			
				Pr	ogram	Electro	nics & C	Communica	tion E	nginee	ring		
Se	mester/	Year		IV th /II nd			Pro	gram			В	.Tech.	
Subje	ct	DC	S			FC 40	22	Culting No.			g Circuits		
Catego	ory	DC	Su	ibject Co	oae:	EC-40)2	Subject Nar		geneuits			
		M	aximu	um Marl	s Allott	ed		G		to at II			
		Theory				Practica	1	Total		itact H	ours	Total Credits	
End	Mid-	Assignme	nt	Quiz	End	LW	Quiz	Marks	L	Т	Р		
Sem	Sem	Assignme		Quiz	Sem	LW	Quiz	Marks		•	•		
60	20	10		10	30	10	10	150	3	0	2	4	
Prerequ		water States	0,910	USBR	Little in the	新 和台。	REAL PROPERTY		Section 1				
	Basic E												
		nic Devices :	and C	Circuits									
		k Analysis								•			
		k Synthesis											
Course	Object	ive:		Ale and a									
1.	To stud	ly the behav	iour c	of opamp	under	open loc	p and cl	osed loop, a	nd und	erstand	d its pe	erformance.	
2.		•				tive feed	back on	opamp perf	ormano	ce			
3.	-	now to analy											
		various linea	ar and	d nonline	ear circu	it applica	ations of	opamp.					
Course	Outco	mes:				朝朝			変動				
After co	mpletio	n of the cou	rse, s	tudents	would b	e able to) -						
CO 1: A	Acquire tors and	knowledge other aplica	and ations	demons	trate the	e basics	of Opera	ational Ampli	fier, filt	ers, os	cillato	rs.signal	
CO 2:	Analyze	different op	o-amp	o circuits	and line	ear and	nonlinea	r application	s of op	amp			
CO 3: 1	Evaluate	e the perform	manc	e of opa	amp circ	uits for	different	applications					
CO 4: I	Design	active filters	, osc	illators a	and de	rive opa	mp circu	its for differe	nt appl	lication	S.		
4													
		-											
											6		
					5		ing -	AT a	5. W. 23		Ł	toph	
				6	Y				0	De		x O	
Depar S.A.T.	tment Of I, Vidisha	Electronics E	Ingine	ering	3 of	19 12	2/2023		Electron		Comn	nunication	

9 a					CO	-PO Ma	pping					
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	-	1	1	-	-	-	2	1
CO2	3	3	2	3	3	1	1		2	•	2	1
CO3	3	2	2	3	3	1	1	-	2	· -	2	1
CO4	3	2	3	2	3	1	1	-	-	-	2	2
Avg.	3	2.5	2.5	2.75	2.25	1	1	-	1	-	2	1.25
1000				Section 1		Conter	ts		TER SAN			
S.No					Descri	ptions					Hrs.	CO's
1	negative of feed	Feedbac e feedbac Iback on on for sust	k, voltag perform	e and ci ance cl	urrent fe haracter	edback, istics of	series a an an	and shur	nt feedb	ack, effe	ct 5	1,2
11	represe Equival frequer current	Operation entation, p ent circui ncy respor ,drift ,CN ls, compe	oin diagr t, open nse of op IRR, slev	am , c loop op amp, op v rate a	haracter amp, c amp pa nd its ef	istics of configura rameters fect on	ideal a tion, op s - offse frequenc	and pra en loop et voltage	ctical o and cl and cu	p – amj osed loo rrent, bia	p, IP 5 IS	1,2,3
Ш	amplifie summin differer	: Linear / er with on ng, scalin ntiator an or, Precisio	e op am g and a d compa	p ,two c veraging arator.	op amp a g amplifi	and thre iers, Ins	e op am trumenta	np, DC a ation an	and AC nplifier,	amplifier integrato	s, r, 10	1,2,3,4
IV	amplifi princip	: Non-line er, analog le and bui ition of PL	g compu Iding blo	tation, v	oltage o	controlle	d oscilla	ator. pł	nase loo	cked loo	p, 08	1,2,3,4
v	differen high pa Crysta Oscilla	: Analyze nt types o ass filters I and We tor. Squa nal diagra	f filters , ,band pa ein bridg are, trian	order an ass filter e Oscill gular a	d cut of ,band s ators, N	f freque top filter legative	ncy ,But R-C ph resista	tterworth ase shif nce Oso	Low pa t, Hartle cillator,	ass filters y, Colpitt Relaxatio	s , ts, 12 on	1,2,3,
Gues	t Lecture	s (if any)				*					Nil	
	Hours											

Pro sol and a sol and , to m

Department Of Electronics Engineering 4 of 19 S.A.T.I, Vidisha

12/2023

Electronics and Communication Engineering

Draw and examine Decibels and Bode Plots-CO2 2. Design of Dual input Balance output Differential Amplifier using Transistor-CO4 3. Design of Comparator circuit using operational amplifier-CO4 Design of / Inverting/Non-inverting Voltage Amplifier -CO4 4. 5. Design of Differential Amplifier. Using 741 opamp IC-CO4 6. Analysis of Gain-Bandwidth Product-CO2 7. Analysis of Slew Rate and Power Bandwidth-CO2 8. Analysis of Non-compensated OpAmp-CO2 9. Analysis of DC Offset voltage.-CO2 10. Design of Operational Trans-conductance Amplifier-CO4 11. Design of Precision Rectifiers-CO4. 12. Design of Triangle-Square waveform Generator-CO4 13. Design of Wien Bridge Oscillator-CO4. 14. Design of Integrator/ Differentiator circuit using 741 opamp IC-CO4 15. Design of Bandpass Filter using 741 opamp IC .- CO4 program or conduct a case study relevant to the subject curriculum Text Books-1. Linear integrated circuit- Ramakant Gayakwad (PHI) 2. OP-Amps their Design and Application- Tobby et all. (Tata Mcgraw Hill) 3. Linear integrated circuit- D. Roychowdhary and Shail B. Jain (New Age International) 4. Integrated Electronics- Millman Halkias (Tata Mcgraw Hill) Reference Books-1. Analog Integrated Circuit Design - Ken Martin and David Johns Op Amps for Everyone- Texas Instruments Modes of Evaluation and Rubric

There will be continuous evaluation during the semester for 40 sessional marks and 60 semester End term Marks. The practical marks are 50, out of which 30 marks will be awarded for viva voce and 20 marks for lab work. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:	
Approval by Academic council on	Date:	
Compiled and designed by	Dr. Jyotsna V. Ogale	
Checked and approved by		

Changes Done-

- 1. Reshuffled the content within different units.
- 2. 10% Extra content added.
- 3. Nothing removed.

Suggestive list of experiments:

- 4. Per unit contact hour distribution changed.
- 5. CO-PO Mapping revised.
- 6. Few practicals are removed.
- 7. Recommend same syllabus for program Electronics and Instrumentation too.

Suggestions-1. Course comes first then course outcomes and then CO-PO Mapping therefore this order should be changed.

Me & son in h to

Department Of Electronics Engineering S.A.T.I, Vidisha.

5 of 19 12/2023

Electronics and Communication Engineering

A FIEL	and the second sec				Autonomo	rtment Ele	te Affilia ctronics	ated to RC Engineer	GPV B ing			
Semest	er/Year		IV th /II nd		Prog	gram				B. Tech.	_	
Subjec Catego	DC	Sul	bject Code	e:	EC-403	Subje Nam		Ante	nna an	id Wave	Propaga	tion
			Ma	aximum Allott	Marks		I			Contact H	Taura	
		Theory		Allot		Practical				Jontact		Total
End Sem	Mid Sen	As	signment	Quiz	End Sem	Lab- Work	Quiz	Total Marks	L	Т	Р	Credits
60 ·	20		10	10	30	10	10	150	3	0	2	4
This c Propag	Electron e Objecti course wi gation in	ve: Ill intro various	c Field Th duce stud media. H	dents to e will t	the conc be able to u	cepts of understand	Antenna I the wo	theory a rking of a	and de	esign as na systen	well a ns and th	s wave nus will
This c Propag be able Course On suc C C C	Electron e Objecti course wi gation in e to devel e Outcom cessful co co1: Expl co2: Inter co3: Desig	nagnetic ve: Ill intro various op his o mpletio ain the r pret the gn and a	e Field Th duce stud media. H own design n of this c adiation n relationsh nalyze dif	dents to e will t n. course s nechani ips bety fferent a	tudent shou sm of EM veen antenn untennas an	understand ild be able waves by a na perforn id antenna	to: antennas ance pa arrays.	rking of a	antenn	ia systen	ns and th	s wave nus will
This c Propag be able Course On suc C C C C C	Electron e Objecti course wi gation in e to devel e Outcom cessful co co1: Expl co2: Inter co3: Desi co4: Anal	nagnetic ve: ull intro various op his o mpletio ain the r pret the gn and a yze and	e Field Th duce stud media. H own design n of this c adiation n relationsh nalyze dif distinguis	dents to e will t n. course s nechani ips bety fferent a h differ	tudent shou sm of EM veen anteni	understand ild be able waves by a na perforn id antennas.	to: antennas ance pa arrays.	rking of a	antenn radiat	ia systen	ns and th	s wave nus will
This c Propag be able Course On suc C C C C	Electron e Objecti course wi gation in e to devel e Outcom cessful co co1: Expl co2: Inter co3: Desi co4: Anal	nagnetic ve: ull intro various op his o mpletio ain the r pret the gn and a yze and	e Field Th duce stud media. H own design n of this c adiation n relationsh nalyze dif distinguis	dents to e will t n. course s nechani ips bety fferent a h differ	tudent shou sm of EM veen antenn intennas an rent type of and its imp	understand ild be able waves by a na perforn id antennas. pact on rac	d the wo to: antennas nance pa arrays. dio wave	rking of a and their rameters. propagat	antenn radiat	ia systen	rns.	us will
This c Propag be able On suc C C C C	Electron e Objecti course wi gation in e to devel e Outcom cessful co co1: Expl co2: Inter co3: Desi co4: Anal co5: Discu	nagnetic ve: ull intro various op his o mpletio ain the r pret the gn and a yze and uss atmo	e Field Th duce stud media. H own design n of this c adiation n relationsh malyze dif distinguis ospheric st	dents to e will to n. course s nechani ips bety fferent a h differ ructure	tudent shou sm of EM veen antenn intennas an rent type of and its imp	understand ild be able waves by a na perforn id antennas. pact on rac	d the wo to: antennas nance pa arrays. dio wave	rking of a and their rameters. propagat	radiat	ion patte	rns.	us will
This c Propag be able Course On suc C C C C C	Electron e Objecti course wi gation in e to devel e Outcom cessful co co1: Expl co2: Inter co3: Desi co4: Anal co5: Disct PO1	nagnetic ve: ull intro various op his o mpletio ain the r pret the gn and a yze and uss atmo	e Field Th duce stud media. H own design n of this c adiation n relationsh malyze dif distinguis ospheric st	dents to e will to n. course s nechani ips bety fferent a h differ ructure	tudent shou sm of EM veen antenn intennas an rent type of and its imp	understand ild be able waves by a na perforn id antennas. pact on rac	d the wo to: antennas nance pa arrays. dio wave	rking of a and their rameters. propagat	radiat	ion patte	rns.	us will
This c Propag be able On suc C C C C C C C C C C C C C C C C C C C	Electron e Objecti course wi gation in e to devel e Outcom cessful co co1: Expl co2: Inter co3: Desi co4: Anal co5: Disco PO1 2	nagnetic ve: ll intro various op his o mpletio ain the r pret the gn and a yze and uss atmo PO2	e Field Th duce stud media. H own design n of this c adiation n relationsh malyze dif distinguis ospheric st	dents to e will to n. course s mechani ips bety fferent a h differ ructure PO4	tudent shou sm of EM veen antenn intennas an rent type of and its imp	understand ild be able waves by a na perforn id antennas. pact on rac	d the wo to: antennas nance pa arrays. dio wave	rking of a and their rameters. propagat	radiat	ion patte	rns.	us will
This c Propag be able On suc C C C C C C C C C C	Electron e Objecti course wi gation in e to devel e Outcom cessful co co1: Expl co2: Inter co3: Desig co4: Anal co5: Disco PO1 2 2 2	nagnetic ve: ll intro various op his o ompletio ain the r pret the gn and a yze and uss atmo PO2 2	e Field Th duce stud media. H own design n of this c adiation n relationsh nalyze dif distinguis ospheric st PO3	dents to e will to n. course s mechani ips bety fferent a ch differ tructure PO4	tudent shou sm of EM y ween anten intennas an rent type of and its imp PO5	understand ild be able waves by a na perforn id antennas. pact on rac	d the wo to: antennas nance pa arrays. dio wave	rking of a and their rameters. propagat	radiat	ion patte	rns.	us will

Department Of Electronics Engineering S.A.T.I, Vidisha.

6 of 19 12/2023

Electronics and Communication Engineering ~

R

S.

ð

Ø

JNITs	Descriptions	Hrs.	COs
I	Antenna Fundamentals: Retarded Potential, Radiation Equation. Radiation Mechanism of Antennas. Radiation Integral and Auxiliary Potential Functions. Radiation from Linear Wire Antennas i.e. Infinitesimal Dipole, Small Dipole, Finite Length Dipole and Half Wave Dipole.	8	1
П	Antenna Performance Parameters: Radiation pattern i.e. Isotropic, Directional, and Omnidirectional Patterns, Radiation Intensity and Power density, Gain and Directivity, Effective area and Aperture, Band width and beam width, Antenna impedance, Antenna Efficiency, Polarization. Friis Transmission Equation and reciprocity. Antenna Radar Cross Section and SAR.	8	2
ш	Antenna array and Fundamentals: Linear, planar and circular. End fire & broad side arrays, Two and multi-element arrays, Technique of multiplication of patterns, Binomial and Dolph Chebycsheff arrays, Phased array, Smart antennas and Beam forming techniques. Antenna Synthesis and techniques.	8	1
IV	Types of Antennas and Analysis: Linear wire antenna and dipole, MF & HF antennas, Tower antenna, VHF & UHF antenna, GSM antennas, Loop Antenna, Rhombic antenna, Aperture antennas, Broad band antennas, Equiangular and Conical equiangular spiral antenna, Frequency independent antennas, Log periodic antenna, Reflector and Horn antennas, Micro strip antennas, measurement and Design approach.	10	3
v	Radio Wave Progation: Ground wave propagation, reflection from earth's surface, Space wave and sky wave propagation, Tropospheric wave and tropospheric scattering, Duct propagation. Ionosphere propagation, Structure of troposphere and ionosphere, Critical frequency, Maximum usable frequency, Lowest usable frequency, Virtual heights and skip distance.	8	1
Guest L	ectures (if any)		
Total H	lours	42	

No. my / A D And Rule to

Department Of Electronics Engineering S.A.T.I, Vidisha.

7 of 19 12/2023

Electronics and Communication Engineering Suggestive list of experiments: To Plot the Radiation Pattern of an Omni Directional Antenna.-CO2 1. 2. To Plot the Radiation Pattern of a Directional Antenna.-CO2 3. To Plot the Radiation Pattern of a Parabolic Reflector Antenna.-CO2 4. To Plot the Radiation Pattern of a Log Periodic Antenna.-CO2 5. To Plot the Radiation Pattern of a Patch Antenna.-CO2 6. To Plot the Radiation Pattern of a Dipole/ Folded Dipole Antenna.-CO2 · 7. To Plot the Radiation Pattern of a Yagi (3-EL/4EL) Antenna.-CO2 8. To Plot the Radiation Pattern of a Monopole/ WHIP/ Collinear Antenna.-CO2 9. To Plot the Radiation Pattern of a Broad site Antenna.-CO2 10. To Plot the Radiation Pattern of a Square Loop Antenna.-CO2 11. Design a loop and dipole antenna.-CO3 12. Design a collinear antenna.-CO3 Batch of students have to develop a mini project in form of circuit design, hardware fabrication, simulation program or conduct a case study relevant to the subject curriculum Text Books-1. Antenna Theory: Analysis and Design, 2nd ed., 2000, Wiley Publication. 2. Kraus J.D., Antennas, 2nd ed., 2000, McGraw Hill. 3. Prasad K. D., Antenna & Wave Propagation, 2nd ed., 2001, Khanna Publication.

Reference Books-

- 1. Collin R.E., Antennas & Wave Propagation, 3rd ed., 2001, McGraw Hill.
- 2. Chatterjee Rajeshwari, Antenna theory and practice, 2nd ed. 1998, New AgePubl.
- 3. Jordan & Ballman, Electromagnetic Wave & Radiation System, 2nd ed., 2006, PHI.

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. The practical marks are 50, out of which 30 marks will be awarded for viva voce and 20 marks for lab work and quiz. Out of 40 sessional marks, 20 shall be awarded for Mid semester test, 20 marks to be awarded for day to dayperformance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the normsof AICTE.

Recommendation by Board of studies on	Date:	
Approval by Academic council on	Date:	
Compiled and designed by	Name 1. Munna Lal Jatav	
Checked and approved by	Name 1.	

und still as a win 23 god in the

8 of 19 12/2023

Electronics and Communication Engineering

SAMRAT ASHOK TECHNOLOGICAL (Engineering College), VIDISHA M (An Autonomous Institute Affiliated to RGPV E Department Electronics Engineerin Program Electronics & Communication Engineering Semester/Year IV th /II nd Program										JTE	
Semester/	Year	IV th /II nd		P	rogram			В.	Гech.		
Subject Category	DC	Subject Cod	e	EC-404		ubject Name:	Di	gital Co	nmuni	cation	
		Maxim	um Ma	Marks Allotted					tact Ho	urs	
		Theory			Pract	tical	Total	001			Total Credits
End Sem	Mid-Sen	n Assignment	Quiz	End Sem	Lab Work	Quiz	Marks	L	Т	Р	
60	20	10	10	30	10	10	150	3	0	2	4
Prerequisi	tes:Analog	g Communicatio	on	<u>.</u>	1	1		1			1

Course Objective:

This course provides an introduction to the basic principles and techniques used in digital communications. The course will help us to understand the principles of sampling & quantization techniques, waveform coding schemes, multiplexing and different digital modulation techniques. The course also introduces analytical techniques to evaluate the performance of communication systems.

Course Outcomes:

After completion of the course, students would be able to -

CO 1: Acquire knowledge, understand and demonstrate about the elements of digital communication system, sampling, quantization, waveform coding, multiplexing, different digital modulation and demodulation techniques. (BL1,BL2)

CO 2: Conduct analysis of baseband signals in time domain and frequency domain.(BL3,BL4)

CO 3: Design communication systems to meet desired needs.(BL3,BL6)

CO4: Evaluate the performance of modulation and demodulation techniques in various transmission environments. And evaluate fundamental communication system parameters such as bandwidth, power and signal to noise ratio.(BL3,BL5)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POI	1 PO12	
CO1	3	2	-	-	-	-	-	-	-	-	-	-	
CO2	3	3	-	2	2	-	-	-	-	-	-	-	
CO3	3	2	3	2	2	-	-	-	-	-	-	-	
CO4	3	2	-	2	2	-	-	-	-	-	-	-	
Content	ts:												
UNITs				Ι	Descriptio	ons					Hrs.	CO's	
Ι	char rate, Hart	nnel, tran bandwi ley's la	f Digital Constitution of line code	iver; Comm ; Concept o Hartley's	unicatior f Entropy	n channe and Info	l charac	teristics: rate; Ch	bit rate annel caj	, baud pacity:	09	1, 2, 3, 4	
II	Sam state Com (DP0	pling an ement); panding;	Id quantizati Aliasing Pulse code elta modulatio	on process:t effect; Qu modulation	antization (PCM)	n proc ; Differ	ess; Qu ential p	uantizatio ulse cod	n error le modu	/noise; lation	10	1, 2, 3, 4	
III	Key Diff M-a	ing (A) erential ry enco	dulation tec SK); Freque Phase shift oding: Need, (QAM).	ency shift keying (DP	keying SK); Qu	(FSK); adrature	Phase Phase s	shift ke shift key	eying (l ving (QP	PSK); SK);	09	1, 2, 3, 4	
IV	Divi Divi divis	ision M ision mu	g technique ultiplexing (ultiplexing (ltiple access on multiple ac	TDM), Fre CDM); Acc (TDMA),	quency 1 ess tech Frequence	Division niques:	Multip Need a	olexing (and meth	(FDM), nods of	Code Time	06	1, 2, 3, 4	
V	freq	uency; a	n to sprea application of rum (DSSS)	SS modula	tion; Typ	es of SS	5 modul	ation: D	irect seq		06	1, 2, 3, 4	
Guest L	ectures	(if any)									Nil		
Total H	ours										40		
Suggest	ive list	of expe	riments:										
	ardwar		elated with d ad can simula	-		l transm	ission te	chnique	s will be	e perforr	ned by	students i	

B.P. Lathi: Modern Analog and Digital Communication System, Oxford University Press.
 J.G Proakis, —Digital Communication^{II}, 4th Edition, Tata Mc Graw Hill Company, 2001.

Reference Books-

- 1. Simon Haykins: Communication Systems, 4th Edition, John Wiley.
- 2. B. Sklar, -Digital Communication Fundamentals and Applications, 2nd Edition, Pearson Education, 2009.
- 3. Singh and Sapre: Communication System, TMH

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Dr. Neelesh Mehra
Checked and approved by	

TECH	NOIDCH		SAM	RAT	AS]	HOK '	ТЕСН	INOL	OGIC	AL IN	ISTITU	JTE		
States and				(E	ngi	neering	g Colle	ege), V	/IDISF	IA M.	P.			
ALER C	erent			(An A	Auto	nomous	Institute	Affiliat	ed to RC	BPV Bhc	opal)			
WIDISH War wat	HA M.P.				Dep	partme	nt Elec	tronics	Engine	ering				
				Program	n El			ommu	nicatio		neering			
Semeste	er/Year		IV th /II nd			Progra	ım				B.Tech.			
Subjec Categor		C	Subject Code: EC 405 Subject Name: Control System											
		Maximum Marks A					Allotted							
		Th	eory			F	ractical				Contact He	ours	Total	
End	Total Crea									Credits				
Sem	Mid-Sem Assignment (End Sem		ork	Marks	L	Т	Р		
60		20	10	1	0	-		-	100	3	0	0	3	
Prerequ	isites:													
•		& Syste												
• Course		Mathem	atics											
1)	-		students capal	ble unde	rstan	ding the	fundam	ental co	ncept of	control	system a	nd math	ematical	
2)	model	ling of t	he system tudents capab			•								
Course			iudenis capao		ling		respons	e, neque	incy resp		<u>u stability</u>	<u> 01 Sysu</u>		
After co	mpletic	on of the	e course, stude	ents wou	ld be	able to	_							
			edge and und					of syste	om and	thair ran	racantati	on stabi	lity time	
	-		behaviour cor		-			-		-		on stadi	inty time	
			e to obtain m			-						nction a	nd obtain	
		-	gnal flow gra				5 01 0111	erent sys	stems, m	iu out ii		iletion ai	ia obain	
	-		ne domain an				behavio	ur of dif	ferent ty	pes of s	ignal and	l system	stability	
.(BL3,B	-			1	5				5	1	C	5	5	
CO4: D	esign fe	edback	controller and	d compe	nsatio	on circui	ts. (BL3	,BL5)						
	PO1	PO2	PO3	PO4	ł	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-		-	-	-	-	-	-	-	-	
CO2	3	3	-	2		2	-	-	-	-	-	-	-	

CO3	3	3	3	2	2	-	-	-	-	-	-	-
CO4	3	2	3	2	2	2	-	-	-	-	-	-
Contents	5:							I				
UNITs				D	escriptic	ons					Hrs.	CO's
Ι	Diffe	erential	n: Control equation representa	resentation o	f physic	al syster	0	1 2	5	· ·	08	1, 2, 3, 4
Ш	varia effec	ation by	haracteristic use of feedba sturbance sig	ack, control s	ystem d	ynamics	by use o	of feedba	ack, con	trol of	08	1, 2, 3, 4
Ш	indio syste	cator, Ť em, De	oonse Anal ime respons sign specific ification of h	e of first or cation of se	der systecond of	tem, Tir rder sys	ne respo	onse of	second	order	07	1, 2, 3, 4
IV	Nece Root	essary co	nalysis in Ti ondition for s echnique: Int rs.	tability, Rou	th Stabil	lity Ĉrite	ria, Rela	ative stat	oility ana	alysis,	07	1, 2, 3, 4
V	respo syste of c study conti	onse of em, min ascade y. Conc	Response second order imum phase and feedback sept of state time system,	er system, P and non min c compensat , state varia	olar plo imum pl ion, Rea ble and	ot, Nyqu hase syst alisation state r	ist plot, tem, Des of basi nodel, S	Bode p sign prob c compo State mo	olot, All olem, Co ensators, odel of	l pass oncept , case linear	10	1, 2, 3, 4
Guest Le	ctures	(if any)									Nil	
Total Ho	ours										40	
Suggesti	ve list	of expe	riments:									
2.	B.C. K J. Nagı LTD-N B.S. M	rathMad IEW DI Ianke, L	F. Golnaragh an Gopal, Cc ELHI. inear Control	ntrol system			EW AGE	EINTER	NATIO	N PUB	LISHEF	35

- S. Hasan Saced, Control System 7th Edition, S K Kataria & Sons.
 Narasimham R. L., Analysis of Linear Control System.
 Padmanabhank, Control System.
 Bhattacharya, Control System Engineering.

Modes of Evaluation and Rubric

There will be continuous evaluation for during the semester for 40 sessional marks and 60 semester End term Marks. Out of 40 sessional marks, 20 shall be awarded for Mid semester, 20 marks to be awarded for day to day performance and Quiz/Assignments. For the 60 Marks, there will be a semester – End examination as per the norms of AICTE.

Recommendation by Board of studies on	Date:
Approval by Academic council on	Date:
Compiled and designed by	Prof. Niraj Kumar
Checked and approved by	

SAMRAT ASHOK TECHNOLOGICAL INSTITUTE

(Engineering College), VIDISHA M.P.

(An Autonomous Institute Affiliated to RGPV Bhopal)

Department Electronics Engineering

Program Electronics & Communication Engineering

Semester	/Year		111/11	Program			·		B.Tech.			
Subject Category	1 11		Subject Code:	EC-400	5	Subje Name		i B	Simul	Simulation Lab-I		
			Maxim	um Mark	s Allotted	1		-	C	ontact Ho	urs	
		Theory			Practical			Total	_			Total Credits
End Sem	Mid- Sem	Ass	ignment	Quiz	End Sem	Lab- Work	Quiz	Marks	L	Т	Р	
-	-		•	-	60	30	10	100	0	2	2	3
Prerequ	usites: (Only for	open el	ectives)								Canada
NIL			-									
Course	Objecti	ve:										
								the funda				
								elps stud				
								ngineerir				
								for solv				
creation	n of gra	phical u	ser inter	faces (G	UIs). TI	his cour	se cover	s topics	like crea	ting scri	pts, deve	eloping
functions, executing programs, debugging, visualizing and creating plot, creating Simulation and GUI and more. By successfully completing this course, students will be able to write programs for various												
calculations and simulations in MATLAB. This course is highly recommended for engineering students												
who are	e interes	ted in so	olving th	e mathe	matical	problem	s and pr	ogrammi	ng with	MATLA	В.	
Course	Outcom	nes:										
On succ	essful co	ompletic	on of this	course	student	should t	be able t	o:	0.50			
CO1: A	bility to	know a	bout the	syntax c	of the lar	nguage	used to s	solve eng	ineering	problem	s.	
CO2: A	bility to	underst	and the o	concept	of progr	amming						
CO3: A	bility to	write p	rograms,	visualiz	e and pl	lot data	and sim	ulate eng	ineering	applicat	ions.	
CO4: A	bility to	use pro	grammir	ng skill r	equired	for the	develop	ment of p	orojects a	at higher	semeste	r.
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COI	3	2	2	2	3	-	-	-	-	-		3
CO2	2	3	-	2	3	1	-	-	3	-	3	3
CO3	2	-	3	-	3	3	2	-	3	-	3	3
CO4	3	2	2	2	3	-	-	-	-	-	3	3

Dinis

Bitt & 201223 12 of 19 12/2023

Electronics and Communication Engineering

Page 1 of 2

Contents	:		and the second			
UNITs	Descriptions	Hrs.	CO's			
Ì	Introduction of MATLAB and history, MATLAB Wi Math built in Functions.	ndows, Elementary 4	COI			
п	Mathematical operations including Arrays, Mathema arrays, Matrices, Matrix algebra with MATLAB.	atical Operations with 4	CO2			
111	Curve Plotting with MATLAB, Control Struct statements, loops, Branch control structure,	tures – Conditional 4	CO2, CO3			
IV	Input/output Functions, Script Files, Functions and Arrays, Structure Arrays.	Function files, Cell 4	CO3, CO4			
V	Basics of Toolboxes, Simulink and GUI.	4	CO4			
Guest L	ectures (if any)	-				
Total Ho	urs	20				
Suggestiv	ve list of experiments :		2			
Batch of s	students have to develop a mini project in form of circuit design or conduct a case study relevant to the subject curriculum	gn, hardware fabrication, simula	ation			
2.	Getting Started With Matlab: A Quick Introduction For Pratap, Oxford University Press MATLAB and its applications in Engineering, R.K. Bar MATLAB - An Introduction with Applications, Amos G	nsal, A. K. Goel, M. K. Sharn				
Referenc 1. 2.	e Books- MATLAB Programming for Engineers S.J.Chapman, T Essential MATLAB for Engineers and Scientists, B.H.I	homson Learning				
Contractor	f Evaluation and Rubric					
departme and 40 m	vill be continuous evaluation for during the semester. T ental lab and the practical marks are 100, out of which on marks for lab work and assignment/quiz.	his laboratory work is prescri 60 marks will be awarded for	bed as core viva voce			
Recomm	endation by Board of studies on Date:					
Approva	al by Academic council on Date:					
	d designed by Name I. Dr. D. K. Shakya					
Compile	ed and designed by	DI. D. K. Shakya				

Brok mig Rock mig NDA Tà. the L

12/2023 13 of 19

Electronics and Communication Engineering