CSE	Code Subject	LTP C
Semester:	CS – 501 Artificial Intelligence	300 3
V Sem		
Prerequisit	e: Discrete mathematics, Basic probability theory and Data Structure	
CO1	Exhibit strong familiarity with a number of important AI	Level 2:
	techniques, including in particular search, knowledge	Understand
	representation, planning and constraint management.	
CO2	Demonstrate various informed search methods to solve AI	Level 3:
	application problems.	Apply
CO3	Build awareness of AI facing major challenges and the complexity	Level 3:
	of typical problems within the field.	Apply
CO4	Illustrate the concepts of knowledge representation through logics,	Level 3:
	inference rules and deduce solutions using the principle of	Apply
	resolution.	11.2
CO5	Explain the concept of learning and explore uncertainty with	Level 3:
	probabilistic reasoning.	Apply
		1 PPIJ
Unit - I	Introduction: Artificial Intelligence, Agents- Environments and its	6 Hrs.
Unit - I	types, AI Application areas. Problems, Problem space, Problem	0 1115.
	characteristics, Production systems. Search algorithm	
	terminologies, uninformed searches.	
Unit - II	Informed Search : Generate and Test, Best First Search,	7 Hrs.
Umt - 11	Heuristics Search, A*, Problem reduction, AO*, Hill climbing,	/ 1115.
	Simulated annealing.	
Unit - III	Adversarial Search and Constraint Satisfaction Problems:	8 Hrs.
Unit - 111	minimax algorithm, Optimal decisions in multiplayer games,	о піз.
	Alpha-Beta Pruning, move ordering, Evaluation functions, Cutting off search, Forward pruning,	
	Constraint Satisfaction Problems: Defining Constraint Satisfaction	
	Propagation: Inference in CSPs, Backtracking Search for CSPs,	
II:4 IV7	Local Search for CSPs	7 11
Unit - IV	Knowledge Representation: Types of Knowledge, Knowledge	7 Hrs.
	based system and reasoning, frames, and semantic nets. Logic	
	and Inferences: Propositional logic (PL) and Predicate Logic	
	(FOPL), Inference rules, Conversion to clausal form, Unification,	
	Forward & backward Chaining, Resolution refutation proof for	
T T •4 T 7	PL and FOPL.	7.11
Unit - V	Learning: Rote learning, Learning by Taking Advice, Learning in	7 Hrs.
	Problem-solving, Learning from example: induction, Explanation-	
	based learning. Inductive Learning, Winston learning program,	
	Version space, Candidate elimination algorithm, Decision tree.	
	Reasoning in uncertain environments: Probabilistic reasoning,	
	Bayes theorem.	
Text Books		

• Artificial Intelligence by Elaine Rich, Kevin Knight and Nair ISBN-978-0-07- 008770-5, TMH

Reference Books

- Artificial Intelligence: A Modern Approach, Stuart Russell and Peter Norvig 3rdEdition, Prentice Hall, 2010
- Introduction to Artificial Intelligence, Dan W Patterson Pearson, 2009
- Artificial Intelligence and Intelligent Systems by Padhy, Oxford University Press
- Artificial intelligence, Addison Wesley, Patrick Henry Winston 1992
- Heuristic Search: Theory and Applications, Stefan Edelkamp, Stefan Schroedl Morgan Kaufman, 2011

CO – PO – PSO Mappings

COs		Programme Outcomes (POs)													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1	1	2	2	2	1									
CO2	3	2	3	2	2	1									
CO3	3	2	3	2	2	1						1		2	
CO4	3	2	3	2	2	1						1			
CO5	3	2	3	2	2	1						Ì	1	2	

CSE	Code Subject	LTP C
Semester:	CS – 502 Distributed System	3003
V Sem		
Prerequisit	e: Knowledge of Computer networks and Operating system	I
CO1	Illustrate principles and importance of distributed operating .	Level 2:
		Understand
CO2	Illustrate the concept of Inter process communication and apply	Level 3:
	various distributed algorithms related to clock synchronization.	Apply
CO3	Ability to understand Distributed shared memory.	Level 2:
		Understand
CO4	Designing and evaluation of algorithms and protocols for various	Level 3:
	distributed systems.	Apply
CO5	Ability to understand Transactions and Concurrency control.	Level 2:
		Understand
Unit - I	Introduction to distributed systems: Architecture for Distributed	6 Hrs.
	System, Goals of Distributed system, Hardware and Software	
	concepts, Distributed Computing Model, Advantages &	
	Disadvantage distributed system, Issues in designing Distributed	
	System.	
Unit - II	Inter Process Communication And Synchronization: API for	7 Hrs.
	Internet Protocol, Data Representation & Marshaling, Group	
	Communication, Client Server Communication, RPC- Implementing	
	RPC Mechanism, Stub Generation, RPC Messages. Synchronization:	
	- Clock Synchronization, Logical clocks, Lamport's & vectors logical	
	clocks .Concepts in Message Passing Systems: causal order, total	
	order, total causal order.	
Unit - III	Distributed Shared Memory And Distributed File System: Basic	8 Hrs.
	Concept of Distributed Shared Memory (DSM), DSM Architecture &	
	its Types, Design & Implementations Issues In DSM System,	
	Consistency Model, and Thrashing. Desirable features of good	
	Distributed File System, File Model, File Service Architecture, File	
	Accessing Model, File Sharing Semantics, File Caching Scheme, File	
	Application & Fault tolerance.	
Unit - IV	Distributed Mutual Exclusion: Classification of distributed mutual	7 Hrs.
	exclusion, requirement of mutual exclusion theorem, Token based	
	and non token based algorithms, performance metric for distributed	
	mutual exclusion algorithms. Distributed Deadlock Detection: system	
	model, resource Vs communication deadlocks, deadlock prevention,	
	avoidance, detection & resolution, centralized deadlock detection,	
	distributed deadlock detection.	

Unit - V	Tra	insac	tions	aı	ıd	Con	curr	ency	С	ontro	l:	Intro	duction	n, 7	Hrs.
	Tra	nsact	ions,	Neste	ed Tr	ansao	ctions	s, Loo	cks, (Optim	istic	Conc	urrenc	y	
	Cor	ntrol,	Tin	nestar	np (Ordei	ring,	Cor	npari	son	of N	Aetho	ods fo	or	
	Cor	curre	ency	Contr	rol. I	Distri	buted	Tra	nsacti	ions:	Intro	ducti	on, Fla	at	
	and	Nes	ted I	Distril	outed	Trai	nsacti	ions,	Ator	nic C	omm	it Pr	otocols	s,	
	Cor	curre	ency	Con	trol	in I	Distri	buted	l Tra	insact	ions,	Dis	tribute	d	
	Dea	dlocl	cs, Tr	ansac	tion	Reco	very.								
Text Books	•														
Distr	ribute	ed Sy	stems	s, Cor	ncept	s and	Desi	gn, C	beorg	e Cou	louri	s, J D	ollimo	re and	Tim
Kind	lberg	, Pear	rson l	Educa	tion,	Editi	ion. 2	.009.							
Reference I	Book	s													
• Sing	hal &	z Shiv	varati	i, "A	dvano	ced C	once	pt in	Oper	ating	Syste	ms",	McGra	aw Hill	
U U								•		PHĬ,	•				
• Coul	louris	, Do	llimo	ore, K	Lindb	erg,	"Dist	ribute	ed Sy	/stem	: Coi	ncept	s and	Design	", Pearson
Educ	cation	ı													
• Tena			· ·	,			•		-						
• Gera					Algo	rithm	is", C	ambr	idge	Unive	ersity	Press	8		1
CO – PO -	- PSC) Ma	ppin	gs											
COs				Prog	ram	me O	utco	mes ((POs))			P	SO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
C01	3	1			1					1			1	1	
CO2	2	3	2	2	1								2	2	
CO3	3	1								1			1	1	
CO4	2	2	3	3	2		2						3	2	
CO5	2	3	1		2								1	1	

CSE	Code Subject	LTP C
Semester:	CS – 503 Computer Graphics & Multimedia	310 4
V Sem		
Prerequis	ites: Basic Knowledge of Matrix, 2-dimensional & 3-dimensiona	1
concepts.		
CO1	To understand the Graphics systems, its applications, hardwar	re & Level 2:
	software requirement.	
CO2	To apply scan conversion algorithms of various graphics output primitives.	
CO3	To understand the basic principles of homogeneous coordinate systems, 2-dimensional & 3- dimensional computer graphics systems.	Level 3:
CO4	To create geometrical transformation on 2-dimensional & 3- dimensional objects.	Level 3:
CO5	To apply window into viewport, clipping algorithms of grap objects against a window.	bhics Level 3:
Unit – I	Basic of Computer Graphics, Applications of computer graph Display devices, Cathode Ray Tube, quality of phosphors, C for color display, beam penetration CRT, The Shadow - M CRT, Direct View Storage Tube,LED and LCD. Graphics i devices, Graphics software and standards, Output primiti attributes of output primitives, point and line style, color intensity, Area filling algorithms, Scan line algorithm, boundary & flood fill algorithm, Antialiasing techniques.	ERTs Mask nput ives, and
Unit – II	Line drawing- various algorithms and their comparison, circ generation - Bresenham's midpoint circle drawing algorithm, 2 transformation- Basic Transformations, Matrix Representati and Homogeneous Coordinates, translation, scaling, rotation reflection, sheering, composite transformation, Window to vio port transformation, line clipping algorithm; Cohen Sutherlan polygon clipping; Sutherland hodgman algorithm.	2D ion on, ew
Unit – III	Need for 3-Dimensional imaging, techniques for 3-Dimesi displaying, 3D transformation, projection and its types, Cu parametric and non parametric functions, Bezier (Berns Polynomials) Curves, Cubic-Splines, B-Splines, Need for hid surface removal, Back face detection, Z-buffer method, Pain algorithm.	ırve- stein dden
Unit – IV	Shading Algorithms-Phong's shading model, Gouraud shadin Shadows and background, illumination, light sourc illumination methods (ambient, diffuse reflection, specu reflection), Color models: properties of light, XYZ, RGB, Y and CMY color models	es, lar

U nit – V	7 U	NIT	V: 1	Multin	nedia	syste	ems-A	n in	trodu	ction,	mul	timedia	7 H	Irs.		
	h	hardware and architecture, Data and file format standard i.e. RTF, TIFF, MIDI, JPEG, MPEG, Video- AVI, 3GP, MOV, MPEG,														
	T	TIFF, MIDI, JPEG, MPEG, Video- AVI, 3GP, MOV, MPEG, Compression standards, Multimedia Authoring.														
	C	ompro	ession	standa	ards, I	Multi	nedia	Auth	oring	•						
Referen	ce Bo	oks											•			
• (Compu	ter G	raphic	cs C	Versi	on, 1	Donal	d He	arn	& M.	Pau	line Ba	aker,	Pearso		
E	Educat	ion, N	ew De	elhi, 20	004 (0	Chapte	ers 1 t	o 12 e	xcep	t 10-9	to 10	-22)				
												F. Hug				
	-		-		•							Educati				
• (DpenG	L ES	3.0 P	rogran	nming	g Gui	de 2n	d Edit	tion (Engli	sh, Pa	aperbac	k, Bud	i Rijant		
										0	,	1				
			ın Gin	sburg)	,						,	1				
• P	PEARS	SON.		0,												
• P • F	PEARS Rogers	SON. , "Pro	cedura	ıl elem	ients o			r Graț	ohics	", Tata		Graw Hi	11.			
• P • F	PEARS Rogers	SON. , "Pro		ıl elem	ients o			r Graț	ohics	", Tata			11.			
• P • F • P	PEARS Rogers Parekh	SON. , "Pro , "Prin	cedura iciples	ll elem if mu	ients o			r Graț	ohics	", Tata			11.			
• P • F • P	PEARS Rogers Parekh	SON. , "Pro , "Prin	cedura iciples	ll elem if mu	ients o ltimeo	dia", 1		r Graț lcGra	ohics w Hi	", Tata				50		
• P • F • P	PEARS Rogers Parekh	SON. , "Pro , "Prin	cedura iciples	ll elem if mu	ients o ltimeo	dia", 1	Fata M	r Graț lcGra	ohics w Hi	", Tata				SO 2		
• P • F • P	PEARS Rogers Parekh PO – P	SON. , "Pro , "Prin PSO N	cedura iciples Iappir	il elem if mu ngs Pro	ltimed	dia", T	Tata M Dutco	r Graj IcGra mes (I	ohics w Hi P Os	", Tata 11.	a McC	Graw Hi	P			
• P • F • P CO - P	PEARS Rogers Parekh PO – P	SON. , "Pro , "Prin PSO N	cedura iciples Iappir	il elem if mu ngs Pro	ltimed	dia", 1 nme (Tata M Dutcon 7	r Graj IcGra mes (I	ohics w Hi P Os	", Tata 11.	a McC	Graw Hi	PS 1			
• P • F • P CO - P COs	PEARS Rogers Parekh PO – P	SON. , "Pro , "Prin PSO N	cedura aciples Iappir 3	ll elem if mu ngs Pro 4	ents o ltimeo ogran 5	dia", 7	Tata M Dutcon 7 2	r Grap IcGra mes (I 8 1	ohics w Hi P Os	", Tata 11.	a McC	Graw Hi	P S 1 1			
• F • F • F CO - F COs CO1 CO2	PEARS Parekh PO – P	SON. , "Pro- , "Prin 'SO N	cedura aciples Iappir 3	ll elem if mu ngs Pro 4 2	ogram	dia", 7	Tata M Dutcon 7 2 1	r Grap IcGra mes (I 8 1 1	ohics w Hi P Os	", Tata 11.	a McC	Graw Hi	P 1 1 3	2		

CSE	Code Subject	LTP C
Semester:	CS –504 (A) Software Testing	300 3
V Sem		
Prerequisit	e: Software Engineering and UML	
CO1	Understand importance of testing techniques in software quality	Level 2:
	management and assurance (Understand)	Understand
CO2	Understand and apply the concepts of software testing and its	Level 3:
	application in various scenarios with the help of different testing strategies, methods and tools.	Apply
CO3	Create test case scenarios for different application softwares	Level 3:
	using various testing techniques. (Create)	Apply
CO4	Apply different testing methodologies used in industries for	Level 3:
	software testing. (Apply)	Apply
CO5	Identify various types of software risks and its impact on different	Level 4:
	software applications. (Analyze)	Analyze
Unit - I	Introduction: Software Testing, Importance of testing, Roles	6 Hrs.
	and Responsibilities, Testing Principles, Attributes of Good Test,	
	V-Model, Test Case Generation , SDLC Vs STLC, Software	
	Testing Life Cycle-in detail.	
	Types of Testing: Testing Strategies: Unit Testing, Integration	
	Testing, System Testing, Smoke, Regression Testing, Acceptance	
	Testing. CleanRoom Software Engineering. Functional/Non-	
	Functional Testing. Testing Tools, Categorization of testing	
	methods:	
	Manual Testing, Automation Testing and Automated Testing Vs.	
	Manual Testing.	
Unit - II	Non Functional Testing: Performance Test, Memory Test,	7 Hrs.
	Scalability Test, Compatibility Test, Security Test, Cookies Test,	
	Session Test, Recovery Test, Installation Test, Ad-hoc Test, Risk	
	Based Test,	
	Compliance Test. McCall's Quality Factors, FURPS.	
	Software Testing Methodologies: Validation & Verification,	
	White/Glass Box Testing, Black Box Testing, Grey Box Testing,	
	Statement Coverage Testing, Branch Coverage Testing, Path	
	Coverage Testing, Conditional Coverage Testing, Loop Coverage	
	Testing, Boundary Value Analysis, Equivalence Class Partition,	
	State Based Testing, Cause Effective Graph, Decision Table, Use	
	Case Testing, Exploratory testing	
	and Testing Metrics, Testing GUI	
Unit - III	Software Testing Life Cycle: Requirements Analysis/Design,	7 Hrs.
	Traceability Matrix, Test Planning, Objective, Scope of Testing,	
	Schedule, Approach, Roles & Responsibilities, Assumptions,	
	Risks & Mitigations, Entry & Exit Criteria, Test Automation,	
	Deliverables.	

Unit - IV	Test Case	es De	esign:	Wri	te Te	st ca	ises, l	Revie	ew Te	est ca	ses, 🛛	Гest	7 H1	s.
	Cases Ter	mplat	e, Ty	pes c	of Tes	st Ca	lses, l	Diffe	rence	betw	een 7	Гest		
	Scenarios	and												
	Test Cas	es. T	est	Envir	onme	ent s	setup,	Une	dersta	nd t	he S	RS,		
	Hardware	and s	softwa	are re	quire	ment	s, Tes	st Da	ta.					
	Entry & F	ntry & Exit Criteria, Test Automation, Deliverables.												
Unit - V	ý													s.
	Reporting, DRE(Defect Removal Efficiency), Object ,Types of Bugs , Art of Debugging,. Debugging Approaches, Reporting the													
	Bugs, Sev	•								_				
	priority,	Test	Closu	ire, C	riteri	a fo	r test	clos	sure,	Test	sumr	nary		
	report.			1				f at	N	- t u! - 1	r : e-			
	Test Met Cycle, Ty							vietri	cs, M	etric I	Liie			
	QA & QO	•						nnco	Wha	t is O	uality	7		
	Control, I								vv na	i is Q	uanty	/		
Fext Books				<u> </u>	, <u>x</u>		1000	-8						
• Rog	ger S.Pressm	nan, S	oftwa	are en	ginee	ring-	• A pr	actiti	oner'	s App	roacl	h, Mc	Graw	-Hill
	ernational Ec	dition	s											
Reference E	looks													
	ommerville													
	vare Testing	-	-											
	vare Testing vare Testing											iraca	oor N	aik
	Priyadarshi T			ty As	Suran	icc. I	neor.	y anu	1140		y IX 51	masa	gai in	aik
	vare Quality	-	•	es: T	esting	g, Vei	rificat	tion,	and V	alida	tion:	Softw	vare B	lest
	tice by Mich				-									
~ ~ ~ ~ ~														
CO – PO –	PSO Mapp	ings												
COs				Prog	gram	me (Outco	mes	(POs))]	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2										2		
CO2	3	3	3									2		
CO3	3	3	3					2		1		2	1	
005		-		2	•	2	-		1 -	-	1.			
C04	3	3	3	3	2	2	2	2	2	2	1	2	1	1

CSE Semester : V Sem	CodeSubjectCS - 504(B)Web Technology	LTP C 300 3
Prerequisi	te: Basic Knowledge of Internet Concepts, Software Engineering	
CO1	Apply cascading style sheet concept to design web page	Level 2: Understand
CO2	Create Web Page with functionalities using Java Script.	Level 3: Apply
CO3	Understand the event handling in web technology.	Level 3: Apply
CO4	Understand and demonstrate the uses of PHP in web page design and Development of websites.	Level 3: Apply
CO5	Apply cascading style sheet concept to design web page	Level 3: Apply
Unit - I	BASICS OF HTML: Html tags, entities, links, frames, Text Alignment and Lists, Text Formatting, Fonts Control, head, meta, Email Links and link within a Page, creating a Table, rules of web designing, Creating HTML Forms. page design, home page layout, Design concepts, create a Web page with Graphics, Custom Backgrounds and Colors, Creating Animated Graphics, scripts, attributes, events, URL encode.	6 Hrs.
Unit - II	CASCADING STYLE SHEET: CSS, Defining Style with HTML Tags, Features of Style Sheet, Style Properties, Style Classes, External Style Sheet, Creating Style Sheet, working with block elements and objects, working with list and table, CSS advance.	7 Hrs.
Unit - III	JAVASCRIPT: Introduction to JavaScript: Writing First JavaScript, External JavaScript, Variables: Rules for variable names, Declaring the variable, Assign a value to a variable, Scope of variable, Arrays, Using Operators, Control Statements, JavaScript loops, JavaScript Functions: Defining a Function, Returning value from function, User defined function, Dialog Box	8 Hrs.
Unit - IV	JAVASCRIPT DOM: Introduction Object in HTML, Event Handling, Window Object, Document Object, Browser Object, Form Object, Navigator Object, Screen Object, Built in Object, User defined Objects, Cookies.	7 Hrs.

Unit - V	PHP BASICS: Origin and Uses of PHP, Overview of PHP,	7 Hrs.
	General Syntactic Characteristics, Primitives, Operators and	
	Expressions, Output Statement, Control Statements, Arrays,	
	Built-in Functions, User-defined Validating Data Entry, Form	
	Handling, Cookies, Session Tracking	

Reference Books

- "HTML & CSS: The complete reference" by Thomas A. Powel, 5th Edition, McGraw Hill, 2017
- "JavaScript Bible" by Danny Goodman, 7th Edition, Wiely, 2010.
- "Beginning PHP 5" by Dave W & others, Wiley-dreamtech, Edition 2004

CO-PO-PSO Mappings

COs		Programme Outcomes (POs)														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	1	1	2	2	2	1										
CO2	3	2	3	2	2	1										
CO3	3	2	3	2	2	1						1		2		
CO4	3	2	3	2	2	1						1				
CO5	3	2	3	2	2	1								2		

CSE		Code	Subject	LTP C	
Semester:		, ,	Network Security	3003	
-		U U	f Discrete Structures a	e	d students
•			of Computer Networks		
CO1	To Unders	tand cryptograp	phy concepts and appli	cation.	
CO2	To Identify	and investigat	te network security three	ats.	
CO3	Apply secu	rity principles	to system design.		
CO4	To Apply of	cryptography al	lgorithms to design see	cure system	
CO5	To Unders	tand and Apply	v authentication require	nents	
UNITs			Descriptions		Hrs.
UNIT I	Vulnerabil	ity, Active and	on to Cryptography, Se Passive attacks, Securi l Encryption Model, CL	ty services and	4
UNIT II	Cryptograp Technique	ohy, Cryptanal s, Caesar Ciphe	Techniques: Symmet ysis and Brute-Force er, Monoalphabetic Cip ic Cipher, One Time Pa	Attack, Substitution her, Playfair Cipher,	8
UNIT III	block Cip Motivation Modes of Block Cha	oher structure for the feist Block Cipher H ining, Cipher	e Data encryption sta e, stream Ciphers an el Cipher structure, S Encryptions (Electronic Feedback Mode, Outp ric Ciphers, Asymmetric	nd block Ciphers, implified DES,DES Code Book, Cipher ut Feedback Mode,	10
UNIT IV	Public-Ke Public-key cryptosyste	y Cryptograph cryptosysteems, requirem	hy: Principles of public	-key cryptosystems. for public-key	10
UNIT V	Hash an Functions	d MAC Alg , Message Au Digest Algor	orithms : Authentica thentication Code, Has rithm, Secure Hash	h Functions, MD5	8
Total Hou	rs				40
Text Book	s & Referer	ice Books-			

- William Stallings: Cryptography and Network Security, Pearson 6th edition.
- "Cryptography & Network Security", Mc Graw Hill Atul Kahate
- V K Pachghare: Cryptography and Information Security, PHI 2nd Edition
- W. Mao, "Modern Cryptography Theory and Practice", Pearson Education.
- Jonathan Katz and Yehuda Lindell, Introduction to Modern Cryptography, CRC Press.
- Network Security Essentials: Applications and Standards, by William Stallings. Prentice Hall

CO-PO Mappings:

		Programme Outcomes (POs)														
COs	1	2	3	4	5	6	7	8	9	10	11	12	PS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2		
CO-1	1	1	2										1	2		
CO-2	2	2	2										1	2		
CO-3	2	1	2										1	2		
CO-4	2	1	2											2		
CO-5	2	2	1										1	2		

CSE Semester: V Sem	CodeSubjectCS - 505 (A)Foundation of Data Science	LTP (3003
	tes: Mathematics	
C01	To explain how data is collected, managed and stored for data science.	
CO2	To understand the key concepts in data science, including their real-	
CO2	world applications and the toolkit used by data scientists.	
CO3	To implement data collection and management scripts using Mongo DB.	
CO4	Examine the techniques of Data Visualization.	
CO5	Identification of various applications of Data Science.	
UNITs	Descriptions	Hrs.
UNIT I	Data Science-What is Data Science, Need for Data Science, Difference between Data Science & Business Intelligence, Data Science Components, Tools for Data Science, Data Science Life cycle, Applications of Data Science, Data Science Ethics. Representation of Data- Types of data, primary, secondary, quantitative and qualitative data. Types of Measurements, nominal, ordinal, discrete and continuous data.	6
UNIT II	Presentation of data by tables, construction of frequency distributions fo discrete and continuous data. Graphical representation of a frequency distribution by histogram and frequency polygon, cumulative frequency distributions. Data Pre-processing- Knowing Data, Data Cleaning, Data Integration, Data Selection, Data Transformation	r 8
UNIT III	Descriptive Statistics-Arithmetic mean, Median, Mode, Geometric mean, Harmonic mean. Partition values: Quartiles, Deciles and percentiles. Measures of dispersion: Mean deviation, Quartile deviation, Standard deviation, Coefficient of variation. Moments: measures of skewness, Kurtosis	8
UNIT IV	Correlation-Scatter plot, Karl Pearson coefficient of correlation, Spearman's rank correlation coefficient, multiple and partial correlations Regression: Concept of errors, Principles of Least Square, Simple linear regression and its properties. Types of Regressions	10
UNIT V	Basics of Big Data, Problem handling large data, general techniques for handling large data, Basic concept of Machine Learning, training model, validating model, supervised & unsupervised learning.	, 8
Total Hour	'S	40
 Joel Ann Publ Cath O'R 	& Reference Books Grus, Data Science from Scratch, Shroff Publisher/O'Reilly Publisher Med alyn Ng, Kenneth Soo, Num sense Data Science for the Layman, Shro lisher ny O 'Neil and Rachel Schutt. Doing Data Science, Straight Talk from T eilly Publisher. O Mappings	off Publishe

		Programme Outcomes (POs)													
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO-1	3	2											3		
CO-2	3	3			1										
CO-3	3	3	1		1							3		3	
CO-4	3	3	2	1								1	2	3	
CO-5	3	3										1	2		

CSE	Code Subject	LTP C								
Semester:	CS – 505(B) Artificial Intelligence	300 3								
V Sem										
Prerequisit	e: Discrete mathematics, Basic probability theory and Data Structure									
CO1	Exhibit strong familiarity with a number of important AI									
	techniques, including in particular search, knowledge	Understand								
	representation, planning and constraint management.									
CO2	Demonstrate various informed search methods to solve AI	Level 3:								
	application problems.	Apply								
CO3	Build awareness of AI facing major challenges and the complexity	Level 3:								
	of typical problems within the field.	Apply								
CO4	Illustrate the concepts of knowledge representation through logics,	Level 3:								
	inference rules and deduce solutions using the principle of	Apply								
	resolution.									
CO5	Explain the concept of learning and explore uncertainty with	Level 3:								
	probabilistic reasoning.	Apply								
Unit - I	Introduction: Artificial Intelligence, Agents- Environments and its	6 Hrs.								
	types, AI Application areas. Problems, Problem space, Problem									
	characteristics, Production systems. Search algorithm									
	terminologies, uninformed searches.									
Unit - II	Informed Search : Generate and Test, Best First Search, Heuristics	7 Hrs.								
	Search, A*, Problem reduction, AO*, Constraint Satisfaction									
	problems, Hill climbing, Simulated annealing.									
Unit - III	Adversarial Search and Constraint Satisfaction Problems:	8 Hrs.								
	minimax algorithm, Optimal decisions in multiplayer games,									
	Alpha-Beta Pruning, move ordering, Evaluation functions, Cutting									
	off search, Forward pruning,									
	Constraint Satisfaction Problems: Defining Constraint Satisfaction									
	Problems, Variations on the CSP formalism, Constraint									
	Propagation: Inference in CSPs, Backtracking Search for CSPs,									
	Local Search for CSPs									
Unit - IV	Knowledge Representation: Types of Knowledge, Knowledge	7 Hrs.								
	based system and reasoning, frames, and semantic nets. Logic and									
	Inferences: Propositional logic (PL) and Predicate Logic (FOPL),									
	Inference rules, Conversion to clausal form, Unification, Forward									
	& backward Chaining, Resolution refutation proof for PL and									
	FOPL.									
Unit - V	Learning: Rote learning, Learning by Taking Advice, Learning in	7 Hrs.								
,	Problem-solving, Learning from example: induction, Explanation-									
	based learning. Inductive Learning, Winston learning program,									
	Version space, Candidate elimination algorithm, Decision tree.									
	Reasoning in uncertain environments: Probabilistic reasoning,									
	Bayes theorem.									
Text Books	·									

• Artificial Intelligence by Elaine Rich, Kevin Knight and Nair ISBN-978-0-07- 008770-5, TMH

Reference Books

- Artificial Intelligence: A Modern Approach, Stuart Russell and Peter Norvig 3rdEdition, Prentice Hall, 2010
- Introduction to Artificial Intelligence, Dan W Patterson Pearson, 2009
- Artificial Intelligence and Intelligent Systems by Padhy, Oxforfd University Press
- Artificial intelligence, Addisson wessley, Patrick Henry Winston 1992
- Heuristic Search: Theory and Applications, Stefan Edelkamp, Stefan Schroedl Morgan Kaufman, 2011

CO – PO – PSO Ma	appin	igs												
COs	Programme Outcomes (POs)													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1	2	2	2	1								
CO2	3	2	3	2	2	1								
CO3	3	2	3	2	2	1						1		2
CO4	3	2	3	2	2	1						1		
CO5	3	2	3	2	2	1								2

CSE	Code	Subject	LTP C
Semester: V	CS – 506	Programming Lab-1	0042
Course Overviev	v :		
To impart hand or	n experience	of Network traffic analyzer, Crypto g	graphical algorithms,
understand worki	ng of Intrusio	n Detection Systems, secure commun	nication web.
	•	tive is students gain knowledge abou	t multimedia concepts,
2D and 3D Trans	formations		
Course Outcome			
Student who succ	essfully com	pletes this course should be able to	
CO1 Explain line	drawing usin	ng programming language.	
CO2 Explain 2D	and 3D transf	formations	
	-	nimations using animation software.	
*	•	ing image editing software.	
CO5 Explain the	linking betwe	en web and multimedia.	
Suggested List o	-		
•	0	aphics functions in C library.	
2. Write a progra	m to draw a l	ine using DDA algorithm.	
3. Write a program	n to draw a li	ne using Bresenham's algorithm.	
4. Write a program	n to draw a c	ircle using midpoint algorithm.	
· •		ircle using Bresenham's algorithm.	
6. Write a progra	m to draw a r	ectangle using line drawing algorithm	n.
	*	2D Transformation on a line.	
8. Write a program	n to perform	shear transformation on a rectangle.	
· •		circle (alternatively inside and outside	e) around the
circumference of	another circle	2.	
		car using in build graphics function a	and translate it from
	-	om corner of screen.	
		alloons using in build graphics function	on and translate it from
bottom left corner			
		cube using in build library function	*
· · · · · · · · · · · · · · · · · · ·		in x, y, z directions ii) Rotation by a	-
-	-	succession. iii) Scaling in x-direction	n by a factor of 2, scaling
in y- direction by			
	-	ent line clipping (Cohen Sutherland	algorithm).
13. Write a progra		0	
1 0	•	arious in build functions for 2D draw	C
		nimation of a ball moving in a helical	l path.
16. Write a progra	am to show a	nimation of solar system	

CSE	Code		Su	bject	t							LTI	P C	
Semester: V	CS – 5	07	Pr	ogra	mmi	ng La	b-2					004	4 2	
Course Objectiv	es :													
• To orient	students	to bas	sics o	of web	o serv	er alc	ong w	vith in	stalla	ntion.				
• To orient	students	to we	b pro	gram	ming	fund	amer	ntal ar	nd ex	pose	stude	nts to	PH	Р
Script (ser	rver side	script	ing)	to dev	velop	inter	activ	e web	page	e deve	elopn	nent.		
• To orient	students	to bas	sics o	f My	SQLi	alon	g wit	h inst	allati	on an	d wo	rking		
• To expose	e students	to ac	lvanc	ed co	oncep	ts in l	PHP.							
• To orient	students	to Fu	ndam	nental	s of A	AJAX	scrip	ot						
Course Outcome	es:													
Student who succ	essfully	comp	letes	this c	ourse	e shou	ıld be	e able	to					
CO 1: Develop a	fundame	ntal u	nder	standi	ing of	f web	serv	ers al	ong v	vith ii	nstall	ation,		
configuration, and	d setup.													
CO 2: Develop in	teractive	web	page	using	g PHI	P .								
CO 3: Create a M	lySQLi c	onnec	tivit	y usin	ig PH	P alo	ng w	ith in	stalla	tion,	confi	gurat	iona	nd
code.														
CO 4: Operate fil	e using P	HP a	nd m	anage	e the	sessic	n.							
CO 5: Create AJA	AX script	to re	trieve	e and	upda	te dat	a in c	lataba	ase.					
List of Experime	ents :													
1 Demonstration	of open s	ource	e web	serv	er's i	nstall	ation	i.e. x	ampp	o, lam	ıp,			
etc. on Linux/ Ub	ountu.													
2 Design HTML	form and	retrie	eve th	ne val	ues in	n PHI	P scri	pt.						
3 PHP variables,	•	•						c).						
4 PHP Functions:	•	•												
5 MySQLi conne	•						ГE w	ith PI	HP.					
6 PHP Mysqli cor	-		-	OP me	ethod	•								
7 PHP script for H	-	-												
8 PHP script for-S		-	-		-	,								
9 AJAX Script us														
10 PHP script to u	update an	d retr	ieve	data	stored	1 in d	ataba	se fro	om us	er us	ing A	jax.		
CO – PO – PSO	Mapping	gs												
COs				Prog	gram	me O	utco	mes (POs))				PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	-	-	-	3	1	2	2	-	2	2	2	-	3
CO2	3	2	2	2	3	3	2	2	-	2	2	1	1	2
CO3	3	2	3	2	3	3	2	2	-	3	2	2	1	3
CO4	3	2	3	3	3	3	2	2	-	3	2	2	2	2
COL	2	1	2		1	2		2		1	-			

-

CO5 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

References:

- https://coeosmanabad.ac.in/wp-content/uploads/2020/03/OSL_Lab_17_18.pdf
- <u>https://mis.alagappauniversity.ac.in/siteAdmin/dde-admin/uploads/3/PG_M.Sc._Information%20Technology_31334%20OPEN%20SOURCE%20LAB.pdf</u>
- https://www.profajaypashankar.com/wp-content/uploads/2018/08/AWPManual.pdf
- <u>https://methodist.edu.in/web/uploads/files/AY_2019-</u> 20%20WEB%20PROGRAMMING%20LAB.pdf